Properties

Label 2-98-49.29-c3-0-6
Degree $2$
Conductor $98$
Sign $-0.372 - 0.928i$
Analytic cond. $5.78218$
Root an. cond. $2.40461$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.80 + 0.867i)2-s + (1.61 + 7.07i)3-s + (2.49 + 3.12i)4-s + (2.21 + 9.71i)5-s + (−3.22 + 14.1i)6-s + (7.24 − 17.0i)7-s + (1.78 + 7.79i)8-s + (−23.0 + 11.1i)9-s + (−4.43 + 19.4i)10-s + (−20.2 − 9.73i)11-s + (−18.0 + 22.6i)12-s + (−5.12 − 2.46i)13-s + (27.8 − 24.4i)14-s + (−65.1 + 31.3i)15-s + (−3.56 + 15.5i)16-s + (−5.55 + 6.96i)17-s + ⋯
L(s)  = 1  + (0.637 + 0.306i)2-s + (0.310 + 1.36i)3-s + (0.311 + 0.390i)4-s + (0.198 + 0.868i)5-s + (−0.219 + 0.962i)6-s + (0.391 − 0.920i)7-s + (0.0786 + 0.344i)8-s + (−0.854 + 0.411i)9-s + (−0.140 + 0.614i)10-s + (−0.553 − 0.266i)11-s + (−0.435 + 0.545i)12-s + (−0.109 − 0.0526i)13-s + (0.531 − 0.466i)14-s + (−1.12 + 0.539i)15-s + (−0.0556 + 0.243i)16-s + (−0.0792 + 0.0994i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.372 - 0.928i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.372 - 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $-0.372 - 0.928i$
Analytic conductor: \(5.78218\)
Root analytic conductor: \(2.40461\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{98} (29, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :3/2),\ -0.372 - 0.928i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.38998 + 2.05573i\)
\(L(\frac12)\) \(\approx\) \(1.38998 + 2.05573i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.80 - 0.867i)T \)
7 \( 1 + (-7.24 + 17.0i)T \)
good3 \( 1 + (-1.61 - 7.07i)T + (-24.3 + 11.7i)T^{2} \)
5 \( 1 + (-2.21 - 9.71i)T + (-112. + 54.2i)T^{2} \)
11 \( 1 + (20.2 + 9.73i)T + (829. + 1.04e3i)T^{2} \)
13 \( 1 + (5.12 + 2.46i)T + (1.36e3 + 1.71e3i)T^{2} \)
17 \( 1 + (5.55 - 6.96i)T + (-1.09e3 - 4.78e3i)T^{2} \)
19 \( 1 - 89.6T + 6.85e3T^{2} \)
23 \( 1 + (44.0 + 55.2i)T + (-2.70e3 + 1.18e4i)T^{2} \)
29 \( 1 + (95.0 - 119. i)T + (-5.42e3 - 2.37e4i)T^{2} \)
31 \( 1 - 167.T + 2.97e4T^{2} \)
37 \( 1 + (-209. + 262. i)T + (-1.12e4 - 4.93e4i)T^{2} \)
41 \( 1 + (68.8 + 301. i)T + (-6.20e4 + 2.99e4i)T^{2} \)
43 \( 1 + (102. - 447. i)T + (-7.16e4 - 3.44e4i)T^{2} \)
47 \( 1 + (-38.7 - 18.6i)T + (6.47e4 + 8.11e4i)T^{2} \)
53 \( 1 + (249. + 312. i)T + (-3.31e4 + 1.45e5i)T^{2} \)
59 \( 1 + (-51.9 + 227. i)T + (-1.85e5 - 8.91e4i)T^{2} \)
61 \( 1 + (-399. + 500. i)T + (-5.05e4 - 2.21e5i)T^{2} \)
67 \( 1 - 357.T + 3.00e5T^{2} \)
71 \( 1 + (-427. - 536. i)T + (-7.96e4 + 3.48e5i)T^{2} \)
73 \( 1 + (1.02e3 - 494. i)T + (2.42e5 - 3.04e5i)T^{2} \)
79 \( 1 + 841.T + 4.93e5T^{2} \)
83 \( 1 + (-240. + 115. i)T + (3.56e5 - 4.47e5i)T^{2} \)
89 \( 1 + (1.16e3 - 561. i)T + (4.39e5 - 5.51e5i)T^{2} \)
97 \( 1 - 1.30e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.34689499356547492172018648285, −13.01308900769050659852970864556, −11.30882127173104041878039073674, −10.58019715139533321987216759816, −9.703563548949816303175114572118, −8.119892858009700050014312468716, −6.88739634898073122335397584882, −5.29952037516754946089381181284, −4.12054388113136026911328607553, −2.98601726748682408085623296410, 1.35403069418339791167360285199, 2.62665151211451575325264665827, 4.89413836549418159727862153338, 5.99739487914054871770461587632, 7.47147491638004424990197476561, 8.478717540035549070023838477061, 9.770936703956923955891005779358, 11.62791239636689142446891922695, 12.18769050092826931867353112865, 13.16117379808506013752535132169

Graph of the $Z$-function along the critical line