Properties

Label 2-975-1.1-c5-0-184
Degree $2$
Conductor $975$
Sign $-1$
Analytic cond. $156.374$
Root an. cond. $12.5049$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.48·2-s + 9·3-s + 57.9·4-s + 85.3·6-s − 118.·7-s + 245.·8-s + 81·9-s − 612.·11-s + 521.·12-s + 169·13-s − 1.12e3·14-s + 478.·16-s + 927.·17-s + 768.·18-s + 1.11e3·19-s − 1.06e3·21-s − 5.80e3·22-s − 373.·23-s + 2.21e3·24-s + 1.60e3·26-s + 729·27-s − 6.85e3·28-s − 4.43e3·29-s − 8.19e3·31-s − 3.33e3·32-s − 5.51e3·33-s + 8.79e3·34-s + ⋯
L(s)  = 1  + 1.67·2-s + 0.577·3-s + 1.81·4-s + 0.967·6-s − 0.912·7-s + 1.35·8-s + 0.333·9-s − 1.52·11-s + 1.04·12-s + 0.277·13-s − 1.52·14-s + 0.467·16-s + 0.778·17-s + 0.558·18-s + 0.705·19-s − 0.526·21-s − 2.55·22-s − 0.147·23-s + 0.784·24-s + 0.464·26-s + 0.192·27-s − 1.65·28-s − 0.979·29-s − 1.53·31-s − 0.575·32-s − 0.880·33-s + 1.30·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(156.374\)
Root analytic conductor: \(12.5049\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 975,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
5 \( 1 \)
13 \( 1 - 169T \)
good2 \( 1 - 9.48T + 32T^{2} \)
7 \( 1 + 118.T + 1.68e4T^{2} \)
11 \( 1 + 612.T + 1.61e5T^{2} \)
17 \( 1 - 927.T + 1.41e6T^{2} \)
19 \( 1 - 1.11e3T + 2.47e6T^{2} \)
23 \( 1 + 373.T + 6.43e6T^{2} \)
29 \( 1 + 4.43e3T + 2.05e7T^{2} \)
31 \( 1 + 8.19e3T + 2.86e7T^{2} \)
37 \( 1 + 3.18e3T + 6.93e7T^{2} \)
41 \( 1 + 1.01e4T + 1.15e8T^{2} \)
43 \( 1 - 2.07e4T + 1.47e8T^{2} \)
47 \( 1 + 7.13e3T + 2.29e8T^{2} \)
53 \( 1 + 6.72e3T + 4.18e8T^{2} \)
59 \( 1 - 4.33e4T + 7.14e8T^{2} \)
61 \( 1 + 3.06e4T + 8.44e8T^{2} \)
67 \( 1 + 6.49e4T + 1.35e9T^{2} \)
71 \( 1 + 5.13e4T + 1.80e9T^{2} \)
73 \( 1 + 3.34e4T + 2.07e9T^{2} \)
79 \( 1 + 5.13e4T + 3.07e9T^{2} \)
83 \( 1 + 1.07e5T + 3.93e9T^{2} \)
89 \( 1 + 1.21e5T + 5.58e9T^{2} \)
97 \( 1 - 8.14e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.847942062503719478108054968186, −7.60604456637800196065958990791, −7.13287786505171042571074995643, −5.84648695083420590029345385543, −5.46642461960274584302184171573, −4.34016549294829566938022938578, −3.31905322588906733435974949742, −2.95430473999340418697243901722, −1.80550904378984041155886197547, 0, 1.80550904378984041155886197547, 2.95430473999340418697243901722, 3.31905322588906733435974949742, 4.34016549294829566938022938578, 5.46642461960274584302184171573, 5.84648695083420590029345385543, 7.13287786505171042571074995643, 7.60604456637800196065958990791, 8.847942062503719478108054968186

Graph of the $Z$-function along the critical line