Properties

Label 2-975-1.1-c3-0-82
Degree $2$
Conductor $975$
Sign $-1$
Analytic cond. $57.5268$
Root an. cond. $7.58464$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 8·4-s − 17·7-s + 9·9-s + 39·11-s − 24·12-s − 13·13-s + 64·16-s + 93·17-s − 76·19-s − 51·21-s − 174·23-s + 27·27-s + 136·28-s − 57·29-s + 281·31-s + 117·33-s − 72·36-s + 286·37-s − 39·39-s − 264·41-s + 166·43-s − 312·44-s − 315·47-s + 192·48-s − 54·49-s + 279·51-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.917·7-s + 1/3·9-s + 1.06·11-s − 0.577·12-s − 0.277·13-s + 16-s + 1.32·17-s − 0.917·19-s − 0.529·21-s − 1.57·23-s + 0.192·27-s + 0.917·28-s − 0.364·29-s + 1.62·31-s + 0.617·33-s − 1/3·36-s + 1.27·37-s − 0.160·39-s − 1.00·41-s + 0.588·43-s − 1.06·44-s − 0.977·47-s + 0.577·48-s − 0.157·49-s + 0.766·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(57.5268\)
Root analytic conductor: \(7.58464\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 975,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 \)
13 \( 1 + p T \)
good2 \( 1 + p^{3} T^{2} \)
7 \( 1 + 17 T + p^{3} T^{2} \)
11 \( 1 - 39 T + p^{3} T^{2} \)
17 \( 1 - 93 T + p^{3} T^{2} \)
19 \( 1 + 4 p T + p^{3} T^{2} \)
23 \( 1 + 174 T + p^{3} T^{2} \)
29 \( 1 + 57 T + p^{3} T^{2} \)
31 \( 1 - 281 T + p^{3} T^{2} \)
37 \( 1 - 286 T + p^{3} T^{2} \)
41 \( 1 + 264 T + p^{3} T^{2} \)
43 \( 1 - 166 T + p^{3} T^{2} \)
47 \( 1 + 315 T + p^{3} T^{2} \)
53 \( 1 - 207 T + p^{3} T^{2} \)
59 \( 1 + 519 T + p^{3} T^{2} \)
61 \( 1 + 511 T + p^{3} T^{2} \)
67 \( 1 + 803 T + p^{3} T^{2} \)
71 \( 1 - 624 T + p^{3} T^{2} \)
73 \( 1 + 698 T + p^{3} T^{2} \)
79 \( 1 - 554 T + p^{3} T^{2} \)
83 \( 1 + 507 T + p^{3} T^{2} \)
89 \( 1 - 360 T + p^{3} T^{2} \)
97 \( 1 + 1370 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.427512004996867925232007516288, −8.373988593603319473569460336610, −7.81184451559920717634767827891, −6.54711496532145626640403816760, −5.85133443027087436188735004852, −4.50679771782056982835379097950, −3.83341840698490577214809546249, −2.91888347185253102209988346062, −1.36433408587650242298184215668, 0, 1.36433408587650242298184215668, 2.91888347185253102209988346062, 3.83341840698490577214809546249, 4.50679771782056982835379097950, 5.85133443027087436188735004852, 6.54711496532145626640403816760, 7.81184451559920717634767827891, 8.373988593603319473569460336610, 9.427512004996867925232007516288

Graph of the $Z$-function along the critical line