Properties

Label 2-975-1.1-c3-0-0
Degree $2$
Conductor $975$
Sign $1$
Analytic cond. $57.5268$
Root an. cond. $7.58464$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.29·2-s − 3·3-s − 6.31·4-s + 3.89·6-s − 34.4·7-s + 18.5·8-s + 9·9-s + 7.37·11-s + 18.9·12-s + 13·13-s + 44.7·14-s + 26.3·16-s − 67.1·17-s − 11.6·18-s − 63.6·19-s + 103.·21-s − 9.58·22-s − 165.·23-s − 55.7·24-s − 16.8·26-s − 27·27-s + 217.·28-s − 212.·29-s − 230.·31-s − 182.·32-s − 22.1·33-s + 87.2·34-s + ⋯
L(s)  = 1  − 0.459·2-s − 0.577·3-s − 0.788·4-s + 0.265·6-s − 1.86·7-s + 0.821·8-s + 0.333·9-s + 0.202·11-s + 0.455·12-s + 0.277·13-s + 0.854·14-s + 0.411·16-s − 0.958·17-s − 0.153·18-s − 0.768·19-s + 1.07·21-s − 0.0928·22-s − 1.49·23-s − 0.474·24-s − 0.127·26-s − 0.192·27-s + 1.46·28-s − 1.35·29-s − 1.33·31-s − 1.01·32-s − 0.116·33-s + 0.440·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(975\)    =    \(3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(57.5268\)
Root analytic conductor: \(7.58464\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 975,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.01984909760\)
\(L(\frac12)\) \(\approx\) \(0.01984909760\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
13 \( 1 - 13T \)
good2 \( 1 + 1.29T + 8T^{2} \)
7 \( 1 + 34.4T + 343T^{2} \)
11 \( 1 - 7.37T + 1.33e3T^{2} \)
17 \( 1 + 67.1T + 4.91e3T^{2} \)
19 \( 1 + 63.6T + 6.85e3T^{2} \)
23 \( 1 + 165.T + 1.21e4T^{2} \)
29 \( 1 + 212.T + 2.43e4T^{2} \)
31 \( 1 + 230.T + 2.97e4T^{2} \)
37 \( 1 + 316.T + 5.06e4T^{2} \)
41 \( 1 - 76.4T + 6.89e4T^{2} \)
43 \( 1 + 267.T + 7.95e4T^{2} \)
47 \( 1 - 47.5T + 1.03e5T^{2} \)
53 \( 1 + 426.T + 1.48e5T^{2} \)
59 \( 1 + 818.T + 2.05e5T^{2} \)
61 \( 1 - 127.T + 2.26e5T^{2} \)
67 \( 1 - 538.T + 3.00e5T^{2} \)
71 \( 1 + 221.T + 3.57e5T^{2} \)
73 \( 1 - 145.T + 3.89e5T^{2} \)
79 \( 1 - 1.27e3T + 4.93e5T^{2} \)
83 \( 1 + 1.01e3T + 5.71e5T^{2} \)
89 \( 1 - 1.44e3T + 7.04e5T^{2} \)
97 \( 1 + 1.00e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.444627901801938689037979310297, −9.152389958400696500311464557102, −8.053824260255676824571561486464, −6.95796536740837933836889992265, −6.27756095240972916066453616083, −5.42206600883774638964994782960, −4.14465229771679204964048719149, −3.52559272524580193682709146795, −1.85014645824918393484220647529, −0.080727321434615411005369414873, 0.080727321434615411005369414873, 1.85014645824918393484220647529, 3.52559272524580193682709146795, 4.14465229771679204964048719149, 5.42206600883774638964994782960, 6.27756095240972916066453616083, 6.95796536740837933836889992265, 8.053824260255676824571561486464, 9.152389958400696500311464557102, 9.444627901801938689037979310297

Graph of the $Z$-function along the critical line