L(s) = 1 | + (0.496 − 1.85i)2-s + (0.676 − 1.59i)3-s + (−1.45 − 0.837i)4-s + (−2.61 − 2.04i)6-s + (−0.527 − 1.97i)7-s + (0.440 − 0.440i)8-s + (−2.08 − 2.15i)9-s + (−0.0324 − 0.0561i)11-s + (−2.31 + 1.74i)12-s + (−3.39 + 1.22i)13-s − 3.91·14-s + (−2.27 − 3.93i)16-s + (1.31 + 4.88i)17-s + (−5.02 + 2.79i)18-s + (1.37 − 2.38i)19-s + ⋯ |
L(s) = 1 | + (0.350 − 1.30i)2-s + (0.390 − 0.920i)3-s + (−0.725 − 0.418i)4-s + (−1.06 − 0.834i)6-s + (−0.199 − 0.744i)7-s + (0.155 − 0.155i)8-s + (−0.694 − 0.719i)9-s + (−0.00977 − 0.0169i)11-s + (−0.668 + 0.504i)12-s + (−0.940 + 0.338i)13-s − 1.04·14-s + (−0.567 − 0.983i)16-s + (0.317 + 1.18i)17-s + (−1.18 + 0.657i)18-s + (0.315 − 0.546i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.812 - 0.582i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.812 - 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.570122 + 1.77359i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.570122 + 1.77359i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.676 + 1.59i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.39 - 1.22i)T \) |
good | 2 | \( 1 + (-0.496 + 1.85i)T + (-1.73 - i)T^{2} \) |
| 7 | \( 1 + (0.527 + 1.97i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (0.0324 + 0.0561i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.31 - 4.88i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.37 + 2.38i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.36 + 5.10i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (1.40 + 2.42i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.312iT - 31T^{2} \) |
| 37 | \( 1 + (-1.21 - 0.326i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-5.66 - 9.81i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.53 + 9.44i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (-0.638 - 0.638i)T + 47iT^{2} \) |
| 53 | \( 1 + (-5.43 - 5.43i)T + 53iT^{2} \) |
| 59 | \( 1 + (5.86 + 3.38i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.38 - 2.39i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (10.5 + 2.83i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-6.90 + 11.9i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.38 - 7.38i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.34iT - 79T^{2} \) |
| 83 | \( 1 + (2.60 - 2.60i)T - 83iT^{2} \) |
| 89 | \( 1 + (-12.5 + 7.22i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.90 - 7.12i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.730990382629484352988460056544, −8.839049704751188506309068016082, −7.72598175496206737699570510531, −7.09004892035108975742690818206, −6.16770043210411420674302334824, −4.73214482538679614729441536846, −3.80261446319216694192230629962, −2.84120046581741172066148932460, −1.93711538378849418389058439808, −0.71767021039594084679865421321,
2.38312665864537757697561488014, 3.48286715937177507339589974801, 4.75016549958343394238494383610, 5.33464566742802340419128264921, 5.99646925837565437942019573961, 7.33384720848404108852152704526, 7.74203240598988368163867098675, 8.854157490422197918028645181811, 9.414286557512363637995579760708, 10.25453403704359202396573322321