L(s) = 1 | + (2.23 + 1.29i)2-s + (−0.5 + 0.866i)3-s + (2.34 + 4.05i)4-s + (−2.23 + 1.29i)6-s + (3.35 − 1.93i)7-s + 6.93i·8-s + (−0.499 − 0.866i)9-s + (1.25 + 0.727i)11-s − 4.68·12-s + (2.77 + 2.29i)13-s + 10.0·14-s + (−4.28 + 7.42i)16-s + (−1.85 − 3.21i)17-s − 2.58i·18-s + (−4.01 + 2.31i)19-s + ⋯ |
L(s) = 1 | + (1.58 + 0.914i)2-s + (−0.288 + 0.499i)3-s + (1.17 + 2.02i)4-s + (−0.914 + 0.527i)6-s + (1.26 − 0.731i)7-s + 2.45i·8-s + (−0.166 − 0.288i)9-s + (0.379 + 0.219i)11-s − 1.35·12-s + (0.770 + 0.637i)13-s + 2.67·14-s + (−1.07 + 1.85i)16-s + (−0.450 − 0.780i)17-s − 0.609i·18-s + (−0.920 + 0.531i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.27339 + 3.31541i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.27339 + 3.31541i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-2.77 - 2.29i)T \) |
good | 2 | \( 1 + (-2.23 - 1.29i)T + (1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (-3.35 + 1.93i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.25 - 0.727i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.85 + 3.21i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.01 - 2.31i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.79 - 4.83i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.944 + 1.63i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 8.50iT - 31T^{2} \) |
| 37 | \( 1 + (8.21 + 4.74i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.90 - 3.40i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.81 + 8.33i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.84iT - 47T^{2} \) |
| 53 | \( 1 + 12.9T + 53T^{2} \) |
| 59 | \( 1 + (-8.34 + 4.81i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.669 - 1.15i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.16 + 1.82i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.09 - 3.51i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 3.43iT - 73T^{2} \) |
| 79 | \( 1 - 15.4T + 79T^{2} \) |
| 83 | \( 1 - 0.637iT - 83T^{2} \) |
| 89 | \( 1 + (-2.83 - 1.63i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-12.8 + 7.39i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60175988680664543465753614793, −9.305064967995678190373328006359, −8.203910626279758183361351829536, −7.51995925963193592588530141295, −6.62386553327289996120339755725, −5.84469286402714146309752661682, −4.91221434357099854874658418071, −4.21969456936271841011582178231, −3.69620687107748789273506399656, −1.97916566119735514936368497259,
1.40130977895668327985474277425, 2.21135698643471402945680444374, 3.37758438652781438644032059023, 4.53901123271998741121230226311, 5.14991599602591694931854171344, 6.10347527139368241519452776472, 6.64961125485057840781264006429, 8.202529831565344958971189157071, 8.775335713630845500425816224925, 10.48531625737648465384230804920