L(s) = 1 | + 1.53·2-s + 3-s + 0.369·4-s + 1.53·6-s + 3.87·7-s − 2.51·8-s + 9-s + 1.24·11-s + 0.369·12-s − 13-s + 5.97·14-s − 4.60·16-s + 0.659·17-s + 1.53·18-s + 6.97·19-s + 3.87·21-s + 1.92·22-s + 1.55·23-s − 2.51·24-s − 1.53·26-s + 27-s + 1.43·28-s − 3·29-s + 5.43·31-s − 2.06·32-s + 1.24·33-s + 1.01·34-s + ⋯ |
L(s) = 1 | + 1.08·2-s + 0.577·3-s + 0.184·4-s + 0.628·6-s + 1.46·7-s − 0.887·8-s + 0.333·9-s + 0.376·11-s + 0.106·12-s − 0.277·13-s + 1.59·14-s − 1.15·16-s + 0.160·17-s + 0.362·18-s + 1.59·19-s + 0.846·21-s + 0.409·22-s + 0.323·23-s − 0.512·24-s − 0.301·26-s + 0.192·27-s + 0.270·28-s − 0.557·29-s + 0.975·31-s − 0.364·32-s + 0.217·33-s + 0.174·34-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.524661112 |
L(21) |
≈ |
3.524661112 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 13 | 1+T |
good | 2 | 1−1.53T+2T2 |
| 7 | 1−3.87T+7T2 |
| 11 | 1−1.24T+11T2 |
| 17 | 1−0.659T+17T2 |
| 19 | 1−6.97T+19T2 |
| 23 | 1−1.55T+23T2 |
| 29 | 1+3T+29T2 |
| 31 | 1−5.43T+31T2 |
| 37 | 1−2.29T+37T2 |
| 41 | 1+10.2T+41T2 |
| 43 | 1+8.20T+43T2 |
| 47 | 1−1.53T+47T2 |
| 53 | 1+1.44T+53T2 |
| 59 | 1+12.0T+59T2 |
| 61 | 1+12.1T+61T2 |
| 67 | 1−9.92T+67T2 |
| 71 | 1−11.6T+71T2 |
| 73 | 1+6.20T+73T2 |
| 79 | 1+0.474T+79T2 |
| 83 | 1−13.4T+83T2 |
| 89 | 1+15.9T+89T2 |
| 97 | 1−11.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.901432876215889903039653369273, −9.136070051437953248892360602652, −8.261738277124373502898319837219, −7.54925726713571175162821961570, −6.47149338105626105249361399572, −5.23241160401686095331487935997, −4.83948331932026341695916922314, −3.78735734705806084789356953927, −2.86266284484257058009480957942, −1.49408254883864977709379270130,
1.49408254883864977709379270130, 2.86266284484257058009480957942, 3.78735734705806084789356953927, 4.83948331932026341695916922314, 5.23241160401686095331487935997, 6.47149338105626105249361399572, 7.54925726713571175162821961570, 8.261738277124373502898319837219, 9.136070051437953248892360602652, 9.901432876215889903039653369273