Properties

Label 2-9747-1.1-c1-0-224
Degree $2$
Conductor $9747$
Sign $1$
Analytic cond. $77.8301$
Root an. cond. $8.82214$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.92·2-s + 1.71·4-s + 0.200·5-s + 3.71·7-s − 0.545·8-s + 0.387·10-s − 1.10·11-s + 0.253·13-s + 7.15·14-s − 4.48·16-s + 3.55·17-s + 0.345·20-s − 2.12·22-s + 7.35·23-s − 4.95·25-s + 0.487·26-s + 6.37·28-s − 1.86·29-s + 4.12·31-s − 7.55·32-s + 6.86·34-s + 0.745·35-s + 7.85·37-s − 0.109·40-s + 2.79·41-s + 2.42·43-s − 1.89·44-s + ⋯
L(s)  = 1  + 1.36·2-s + 0.858·4-s + 0.0898·5-s + 1.40·7-s − 0.193·8-s + 0.122·10-s − 0.332·11-s + 0.0701·13-s + 1.91·14-s − 1.12·16-s + 0.863·17-s + 0.0771·20-s − 0.453·22-s + 1.53·23-s − 0.991·25-s + 0.0956·26-s + 1.20·28-s − 0.347·29-s + 0.740·31-s − 1.33·32-s + 1.17·34-s + 0.126·35-s + 1.29·37-s − 0.0173·40-s + 0.437·41-s + 0.369·43-s − 0.285·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9747 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9747 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9747\)    =    \(3^{3} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(77.8301\)
Root analytic conductor: \(8.82214\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9747,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.418620401\)
\(L(\frac12)\) \(\approx\) \(5.418620401\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 - 1.92T + 2T^{2} \)
5 \( 1 - 0.200T + 5T^{2} \)
7 \( 1 - 3.71T + 7T^{2} \)
11 \( 1 + 1.10T + 11T^{2} \)
13 \( 1 - 0.253T + 13T^{2} \)
17 \( 1 - 3.55T + 17T^{2} \)
23 \( 1 - 7.35T + 23T^{2} \)
29 \( 1 + 1.86T + 29T^{2} \)
31 \( 1 - 4.12T + 31T^{2} \)
37 \( 1 - 7.85T + 37T^{2} \)
41 \( 1 - 2.79T + 41T^{2} \)
43 \( 1 - 2.42T + 43T^{2} \)
47 \( 1 - 2.52T + 47T^{2} \)
53 \( 1 - 5.70T + 53T^{2} \)
59 \( 1 + 14.4T + 59T^{2} \)
61 \( 1 + 4.95T + 61T^{2} \)
67 \( 1 - 5.19T + 67T^{2} \)
71 \( 1 + 0.700T + 71T^{2} \)
73 \( 1 - 0.889T + 73T^{2} \)
79 \( 1 + 12.1T + 79T^{2} \)
83 \( 1 - 16.5T + 83T^{2} \)
89 \( 1 - 1.06T + 89T^{2} \)
97 \( 1 - 6.39T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65702106323740957686260746266, −6.88553471828624076699398839517, −5.89455459686466571057456866435, −5.60995275791605413890954172036, −4.71620331537709591279423319783, −4.50419646055964875719216590242, −3.52632381016622582928776515140, −2.79874272276272439687064349757, −1.98197913707749288271097853744, −0.930755535648229456026034830937, 0.930755535648229456026034830937, 1.98197913707749288271097853744, 2.79874272276272439687064349757, 3.52632381016622582928776515140, 4.50419646055964875719216590242, 4.71620331537709591279423319783, 5.60995275791605413890954172036, 5.89455459686466571057456866435, 6.88553471828624076699398839517, 7.65702106323740957686260746266

Graph of the $Z$-function along the critical line