L(s) = 1 | + (−1.5 + 0.866i)2-s + (−2.36 + 1.36i)3-s + (0.5 − 0.866i)4-s + (0.232 − 0.866i)5-s + (2.36 − 4.09i)6-s + (−1.36 − 0.366i)7-s − 1.73i·8-s + (2.23 − 3.86i)9-s + (0.401 + 1.5i)10-s + (−3 − 1.73i)11-s + 2.73i·12-s + (−0.133 + 0.5i)13-s + (2.36 − 0.633i)14-s + (0.633 + 2.36i)15-s + (2.49 + 4.33i)16-s + (−5.59 + 1.5i)17-s + ⋯ |
L(s) = 1 | + (−1.06 + 0.612i)2-s + (−1.36 + 0.788i)3-s + (0.250 − 0.433i)4-s + (0.103 − 0.387i)5-s + (0.965 − 1.67i)6-s + (−0.516 − 0.138i)7-s − 0.612i·8-s + (0.744 − 1.28i)9-s + (0.127 + 0.474i)10-s + (−0.904 − 0.522i)11-s + 0.788i·12-s + (−0.0371 + 0.138i)13-s + (0.632 − 0.169i)14-s + (0.163 + 0.610i)15-s + (0.624 + 1.08i)16-s + (−1.35 + 0.363i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.392 + 0.919i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.392 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 97 | \( 1 + (9 - 4i)T \) |
good | 2 | \( 1 + (1.5 - 0.866i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (2.36 - 1.36i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.232 + 0.866i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (1.36 + 0.366i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (3 + 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.133 - 0.5i)T + (-11.2 - 6.5i)T^{2} \) |
| 17 | \( 1 + (5.59 - 1.5i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (0.267 + 0.267i)T + 19iT^{2} \) |
| 23 | \( 1 + (8.19 - 2.19i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.36 + 8.83i)T + (-25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (5.36 - 3.09i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.96 + 1.06i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (1.90 - 7.09i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-1.09 - 1.90i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 12.9T + 47T^{2} \) |
| 53 | \( 1 + (2.59 - 1.5i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.73 + 1.26i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (0.866 + 1.5i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.732 - 0.732i)T + 67iT^{2} \) |
| 71 | \( 1 + (-3.63 - 13.5i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-3.19 - 5.53i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 6iT - 79T^{2} \) |
| 83 | \( 1 + (-5.36 + 1.43i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 - 6.46iT - 89T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.46385496431320786322316976404, −12.42051326620279157439174217098, −11.09834396210556976769138996886, −10.25149301931082784039782435856, −9.376351778942095276987034592989, −8.167546737691063710064921623745, −6.66313573760057585099069640377, −5.68453019213349724916531252503, −4.18385563070461793963473214298, 0,
2.20707893917941011764918952367, 5.15562357750306937119228483213, 6.43271010030582409414494630439, 7.53147628535938555598608560693, 8.998776468956634929590956354801, 10.44779908660801688124636768210, 10.77128648557267204800907376992, 12.03351563046322045793083113324, 12.71738870939138273622607947798