Properties

Label 2-968-1.1-c5-0-26
Degree $2$
Conductor $968$
Sign $1$
Analytic cond. $155.251$
Root an. cond. $12.4599$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Error: no document with id 273130214 found in table mf_hecke_traces.

Normalization:  

Dirichlet series

L(s)  = 1  − 24.2·3-s − 51.2·5-s + 25.3·7-s + 346.·9-s + 228.·13-s + 1.24e3·15-s + 1.04e3·17-s + 395.·19-s − 614.·21-s − 437.·23-s − 500.·25-s − 2.51e3·27-s + 2.05e3·29-s + 7.46e3·31-s − 1.29e3·35-s + 9.58e3·37-s − 5.55e3·39-s − 7.72e3·41-s + 1.96e4·43-s − 1.77e4·45-s − 1.21e4·47-s − 1.61e4·49-s − 2.52e4·51-s − 3.18e4·53-s − 9.61e3·57-s − 5.12e4·59-s + 4.40e4·61-s + ⋯
L(s)  = 1  − 1.55·3-s − 0.916·5-s + 0.195·7-s + 1.42·9-s + 0.375·13-s + 1.42·15-s + 0.872·17-s + 0.251·19-s − 0.304·21-s − 0.172·23-s − 0.160·25-s − 0.662·27-s + 0.452·29-s + 1.39·31-s − 0.178·35-s + 1.15·37-s − 0.584·39-s − 0.717·41-s + 1.62·43-s − 1.30·45-s − 0.801·47-s − 0.961·49-s − 1.35·51-s − 1.55·53-s − 0.391·57-s − 1.91·59-s + 1.51·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(968\)    =    \(2^{3} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(155.251\)
Root analytic conductor: \(12.4599\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 968,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8538505762\)
\(L(\frac12)\) \(\approx\) \(0.8538505762\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 24.2T + 243T^{2} \)
5 \( 1 + 51.2T + 3.12e3T^{2} \)
7 \( 1 - 25.3T + 1.68e4T^{2} \)
13 \( 1 - 228.T + 3.71e5T^{2} \)
17 \( 1 - 1.04e3T + 1.41e6T^{2} \)
19 \( 1 - 395.T + 2.47e6T^{2} \)
23 \( 1 + 437.T + 6.43e6T^{2} \)
29 \( 1 - 2.05e3T + 2.05e7T^{2} \)
31 \( 1 - 7.46e3T + 2.86e7T^{2} \)
37 \( 1 - 9.58e3T + 6.93e7T^{2} \)
41 \( 1 + 7.72e3T + 1.15e8T^{2} \)
43 \( 1 - 1.96e4T + 1.47e8T^{2} \)
47 \( 1 + 1.21e4T + 2.29e8T^{2} \)
53 \( 1 + 3.18e4T + 4.18e8T^{2} \)
59 \( 1 + 5.12e4T + 7.14e8T^{2} \)
61 \( 1 - 4.40e4T + 8.44e8T^{2} \)
67 \( 1 + 1.56e4T + 1.35e9T^{2} \)
71 \( 1 + 5.13e4T + 1.80e9T^{2} \)
73 \( 1 + 6.98e4T + 2.07e9T^{2} \)
79 \( 1 - 1.04e5T + 3.07e9T^{2} \)
83 \( 1 - 7.24e4T + 3.93e9T^{2} \)
89 \( 1 + 2.57e4T + 5.58e9T^{2} \)
97 \( 1 + 2.87e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.484397106889693021567783235151, −8.160653917398298645354818093582, −7.62157102399003796521042585949, −6.51690775811701629674343047726, −5.91857275897058834020070115023, −4.91483807473727336785970820266, −4.25039940479837116871256948402, −3.09121642297887435961786365018, −1.35150802726891775275131412103, −0.49175320550226277528115136222, 0.49175320550226277528115136222, 1.35150802726891775275131412103, 3.09121642297887435961786365018, 4.25039940479837116871256948402, 4.91483807473727336785970820266, 5.91857275897058834020070115023, 6.51690775811701629674343047726, 7.62157102399003796521042585949, 8.160653917398298645354818093582, 9.484397106889693021567783235151

Graph of the $Z$-function along the critical line