Properties

Label 2-966-23.8-c1-0-15
Degree $2$
Conductor $966$
Sign $0.618 + 0.785i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.142 − 0.989i)2-s + (0.415 + 0.909i)3-s + (−0.959 − 0.281i)4-s + (−1.18 − 1.36i)5-s + (0.959 − 0.281i)6-s + (0.841 + 0.540i)7-s + (−0.415 + 0.909i)8-s + (−0.654 + 0.755i)9-s + (−1.52 + 0.978i)10-s + (0.294 + 2.04i)11-s + (−0.142 − 0.989i)12-s + (4.53 − 2.91i)13-s + (0.654 − 0.755i)14-s + (0.751 − 1.64i)15-s + (0.841 + 0.540i)16-s + (0.123 − 0.0362i)17-s + ⋯
L(s)  = 1  + (0.100 − 0.699i)2-s + (0.239 + 0.525i)3-s + (−0.479 − 0.140i)4-s + (−0.529 − 0.611i)5-s + (0.391 − 0.115i)6-s + (0.317 + 0.204i)7-s + (−0.146 + 0.321i)8-s + (−0.218 + 0.251i)9-s + (−0.481 + 0.309i)10-s + (0.0886 + 0.616i)11-s + (−0.0410 − 0.285i)12-s + (1.25 − 0.808i)13-s + (0.175 − 0.201i)14-s + (0.194 − 0.424i)15-s + (0.210 + 0.135i)16-s + (0.0299 − 0.00878i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.618 + 0.785i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.618 + 0.785i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.618 + 0.785i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.618 + 0.785i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.52278 - 0.739445i\)
\(L(\frac12)\) \(\approx\) \(1.52278 - 0.739445i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.142 + 0.989i)T \)
3 \( 1 + (-0.415 - 0.909i)T \)
7 \( 1 + (-0.841 - 0.540i)T \)
23 \( 1 + (3.43 - 3.34i)T \)
good5 \( 1 + (1.18 + 1.36i)T + (-0.711 + 4.94i)T^{2} \)
11 \( 1 + (-0.294 - 2.04i)T + (-10.5 + 3.09i)T^{2} \)
13 \( 1 + (-4.53 + 2.91i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (-0.123 + 0.0362i)T + (14.3 - 9.19i)T^{2} \)
19 \( 1 + (-2.21 - 0.651i)T + (15.9 + 10.2i)T^{2} \)
29 \( 1 + (-9.94 + 2.92i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (-2.42 + 5.31i)T + (-20.3 - 23.4i)T^{2} \)
37 \( 1 + (-4.33 + 5.00i)T + (-5.26 - 36.6i)T^{2} \)
41 \( 1 + (-4.31 - 4.97i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (3.36 + 7.36i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 + 3.45T + 47T^{2} \)
53 \( 1 + (-3.47 - 2.23i)T + (22.0 + 48.2i)T^{2} \)
59 \( 1 + (4.12 - 2.65i)T + (24.5 - 53.6i)T^{2} \)
61 \( 1 + (-3.97 + 8.69i)T + (-39.9 - 46.1i)T^{2} \)
67 \( 1 + (1.21 - 8.47i)T + (-64.2 - 18.8i)T^{2} \)
71 \( 1 + (-0.419 + 2.91i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (-11.4 - 3.36i)T + (61.4 + 39.4i)T^{2} \)
79 \( 1 + (1.66 - 1.07i)T + (32.8 - 71.8i)T^{2} \)
83 \( 1 + (-4.11 + 4.75i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (-5.19 - 11.3i)T + (-58.2 + 67.2i)T^{2} \)
97 \( 1 + (0.372 + 0.429i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.958865214251095388360289345039, −9.182635906032813080679298016882, −8.229739158318106230248572994451, −7.893525443947122548085620244734, −6.24904030926403684995014304478, −5.27692356021167374472181581996, −4.36469626137064819794452585333, −3.67811159035644876767244421080, −2.46530427714375978765652325039, −0.971397201084020024146937508971, 1.17789693740466780931095099389, 2.95057513912190237681510388915, 3.85166305004024237937667336285, 4.91161426186251260178057126670, 6.28390497711077325111334294484, 6.61473152286620100072638273853, 7.61776672217938981835150465789, 8.361183997210511583642049276360, 8.897283721606246673430367517209, 10.13033655419549545309421413625

Graph of the $Z$-function along the critical line