Properties

Label 2-966-161.17-c1-0-25
Degree $2$
Conductor $966$
Sign $-0.0178 + 0.999i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.995 + 0.0950i)2-s + (−0.690 − 0.723i)3-s + (0.981 − 0.189i)4-s + (2.27 + 1.17i)5-s + (0.755 + 0.654i)6-s + (2.41 − 1.08i)7-s + (−0.959 + 0.281i)8-s + (−0.0475 + 0.998i)9-s + (−2.37 − 0.950i)10-s + (0.506 − 5.30i)11-s + (−0.814 − 0.580i)12-s + (−6.62 + 0.952i)13-s + (−2.30 + 1.30i)14-s + (−0.720 − 2.45i)15-s + (0.928 − 0.371i)16-s + (−2.05 − 5.92i)17-s + ⋯
L(s)  = 1  + (−0.703 + 0.0672i)2-s + (−0.398 − 0.417i)3-s + (0.490 − 0.0946i)4-s + (1.01 + 0.524i)5-s + (0.308 + 0.267i)6-s + (0.912 − 0.408i)7-s + (−0.339 + 0.0996i)8-s + (−0.0158 + 0.332i)9-s + (−0.750 − 0.300i)10-s + (0.152 − 1.59i)11-s + (−0.235 − 0.167i)12-s + (−1.83 + 0.264i)13-s + (−0.614 + 0.349i)14-s + (−0.186 − 0.633i)15-s + (0.232 − 0.0929i)16-s + (−0.497 − 1.43i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0178 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0178 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $-0.0178 + 0.999i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (661, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ -0.0178 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.737446 - 0.750754i\)
\(L(\frac12)\) \(\approx\) \(0.737446 - 0.750754i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.995 - 0.0950i)T \)
3 \( 1 + (0.690 + 0.723i)T \)
7 \( 1 + (-2.41 + 1.08i)T \)
23 \( 1 + (-4.39 - 1.91i)T \)
good5 \( 1 + (-2.27 - 1.17i)T + (2.90 + 4.07i)T^{2} \)
11 \( 1 + (-0.506 + 5.30i)T + (-10.8 - 2.08i)T^{2} \)
13 \( 1 + (6.62 - 0.952i)T + (12.4 - 3.66i)T^{2} \)
17 \( 1 + (2.05 + 5.92i)T + (-13.3 + 10.5i)T^{2} \)
19 \( 1 + (-1.34 + 3.87i)T + (-14.9 - 11.7i)T^{2} \)
29 \( 1 + (0.547 - 0.631i)T + (-4.12 - 28.7i)T^{2} \)
31 \( 1 + (6.89 + 1.67i)T + (27.5 + 14.2i)T^{2} \)
37 \( 1 + (2.20 + 0.104i)T + (36.8 + 3.51i)T^{2} \)
41 \( 1 + (-4.50 - 7.01i)T + (-17.0 + 37.2i)T^{2} \)
43 \( 1 + (1.39 - 4.76i)T + (-36.1 - 23.2i)T^{2} \)
47 \( 1 + (1.06 - 0.614i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (-7.26 + 9.23i)T + (-12.4 - 51.5i)T^{2} \)
59 \( 1 + (-4.38 + 10.9i)T + (-42.7 - 40.7i)T^{2} \)
61 \( 1 + (2.51 + 2.39i)T + (2.90 + 60.9i)T^{2} \)
67 \( 1 + (9.82 - 6.99i)T + (21.9 - 63.3i)T^{2} \)
71 \( 1 + (-4.65 + 10.1i)T + (-46.4 - 53.6i)T^{2} \)
73 \( 1 + (0.394 + 2.04i)T + (-67.7 + 27.1i)T^{2} \)
79 \( 1 + (-8.77 - 11.1i)T + (-18.6 + 76.7i)T^{2} \)
83 \( 1 + (-4.42 - 2.84i)T + (34.4 + 75.4i)T^{2} \)
89 \( 1 + (-1.11 - 4.61i)T + (-79.1 + 40.7i)T^{2} \)
97 \( 1 + (-3.10 + 1.99i)T + (40.2 - 88.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.644730343058772159074652400054, −9.197545772325085128371150886163, −8.036164538856527994430287859740, −7.17500668087579799801768097475, −6.69275800860820677184544729964, −5.50289277900646176330771344253, −4.89684954528236559000903104018, −2.95623860395552280810899447297, −2.06667071841869827026299353668, −0.63012887401514855777011202655, 1.64351588239836115916367831648, 2.29814026080433782563534986996, 4.22892151258000013463394394805, 5.14316237152824698215789071610, 5.73544662202996240451576604052, 7.03441156966908091686360723445, 7.70393690022911898714843244340, 8.945926051284108566690867070333, 9.320667771305029716317208973645, 10.35401850698587667229845062739

Graph of the $Z$-function along the critical line