L(s) = 1 | + (0.809 + 0.587i)2-s + (−2.58 − 1.15i)3-s + (−0.309 − 0.951i)4-s + (−1.41 − 2.44i)6-s + (2.67 − 2.97i)7-s + (0.927 − 2.85i)8-s + (3.34 + 3.71i)9-s + (2.76 + 0.588i)11-s + (−0.295 + 2.81i)12-s + (0.147 + 1.40i)13-s + (3.91 − 0.831i)14-s + (0.809 − 0.587i)16-s + (1.38 − 0.294i)17-s + (0.522 + 4.97i)18-s + (0.418 − 3.97i)19-s + ⋯ |
L(s) = 1 | + (0.572 + 0.415i)2-s + (−1.49 − 0.664i)3-s + (−0.154 − 0.475i)4-s + (−0.577 − 0.999i)6-s + (1.01 − 1.12i)7-s + (0.327 − 1.00i)8-s + (1.11 + 1.23i)9-s + (0.834 + 0.177i)11-s + (−0.0853 + 0.812i)12-s + (0.0409 + 0.390i)13-s + (1.04 − 0.222i)14-s + (0.202 − 0.146i)16-s + (0.335 − 0.0713i)17-s + (0.123 + 1.17i)18-s + (0.0959 − 0.912i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.293 + 0.955i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.293 + 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.812013 - 1.09863i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.812013 - 1.09863i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (-0.809 - 0.587i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (2.58 + 1.15i)T + (2.00 + 2.22i)T^{2} \) |
| 5 | \( 1 + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.67 + 2.97i)T + (-0.731 - 6.96i)T^{2} \) |
| 11 | \( 1 + (-2.76 - 0.588i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (-0.147 - 1.40i)T + (-12.7 + 2.70i)T^{2} \) |
| 17 | \( 1 + (-1.38 + 0.294i)T + (15.5 - 6.91i)T^{2} \) |
| 19 | \( 1 + (-0.418 + 3.97i)T + (-18.5 - 3.95i)T^{2} \) |
| 23 | \( 1 + (-1.74 + 5.37i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (1.14 + 0.831i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 + (2.12 + 3.67i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.82 - 0.813i)T + (27.4 - 30.4i)T^{2} \) |
| 43 | \( 1 + (-0.886 + 8.43i)T + (-42.0 - 8.94i)T^{2} \) |
| 47 | \( 1 + (9.70 - 7.05i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (2.83 + 3.15i)T + (-5.54 + 52.7i)T^{2} \) |
| 59 | \( 1 + (-7.30 - 3.25i)T + (39.4 + 43.8i)T^{2} \) |
| 61 | \( 1 + 1.41T + 61T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.35 - 5.94i)T + (-7.42 + 70.6i)T^{2} \) |
| 73 | \( 1 + (4.14 + 0.882i)T + (66.6 + 29.6i)T^{2} \) |
| 79 | \( 1 + (11.0 - 2.35i)T + (72.1 - 32.1i)T^{2} \) |
| 83 | \( 1 + (-12.9 + 5.75i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + (-2.18 - 6.72i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-2.47 - 7.60i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07038699316510370719404635145, −8.972464848928178742120070038000, −7.57895374479501076626564667187, −6.88130728714059573362793286384, −6.47768870958118025097483838960, −5.30859811478314284811703005117, −4.81058598274686008896694619709, −3.97676743722778700258254794733, −1.56619074760910302975738663497, −0.72945715869650744164688546973,
1.60435201015809476956508550983, 3.21399022082529015332027466035, 4.23623117102496953111139441380, 5.10613386201014919433369841728, 5.54145138931704030075699310536, 6.50140282056551129464779003650, 7.88277045882834963763488861456, 8.618075183535044617338208418060, 9.629822643272648922506309784119, 10.58096688933377270693953414828