L(s) = 1 | + (−0.309 + 0.951i)2-s + (−1.89 + 2.10i)3-s + (0.809 + 0.587i)4-s + (−1.41 − 2.44i)6-s + (−0.418 + 3.97i)7-s + (−2.42 + 1.76i)8-s + (−0.522 − 4.97i)9-s + (−2.58 + 1.15i)11-s + (−2.76 + 0.588i)12-s + (1.38 + 0.294i)13-s + (−3.65 − 1.62i)14-s + (−0.309 − 0.951i)16-s + (−1.29 − 0.575i)17-s + (4.89 + 1.03i)18-s + (3.91 − 0.831i)19-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.672i)2-s + (−1.09 + 1.21i)3-s + (0.404 + 0.293i)4-s + (−0.577 − 0.999i)6-s + (−0.158 + 1.50i)7-s + (−0.858 + 0.623i)8-s + (−0.174 − 1.65i)9-s + (−0.779 + 0.346i)11-s + (−0.798 + 0.169i)12-s + (0.383 + 0.0815i)13-s + (−0.976 − 0.434i)14-s + (−0.0772 − 0.237i)16-s + (−0.313 − 0.139i)17-s + (1.15 + 0.245i)18-s + (0.897 − 0.190i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00955 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00955 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.477567 - 0.473023i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.477567 - 0.473023i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.309 - 0.951i)T + (-1.61 - 1.17i)T^{2} \) |
| 3 | \( 1 + (1.89 - 2.10i)T + (-0.313 - 2.98i)T^{2} \) |
| 5 | \( 1 + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.418 - 3.97i)T + (-6.84 - 1.45i)T^{2} \) |
| 11 | \( 1 + (2.58 - 1.15i)T + (7.36 - 8.17i)T^{2} \) |
| 13 | \( 1 + (-1.38 - 0.294i)T + (11.8 + 5.28i)T^{2} \) |
| 17 | \( 1 + (1.29 + 0.575i)T + (11.3 + 12.6i)T^{2} \) |
| 19 | \( 1 + (-3.91 + 0.831i)T + (17.3 - 7.72i)T^{2} \) |
| 23 | \( 1 + (4.57 - 3.32i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (-0.437 + 1.34i)T + (-23.4 - 17.0i)T^{2} \) |
| 37 | \( 1 + (2.12 + 3.67i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.33 + 1.48i)T + (-4.28 + 40.7i)T^{2} \) |
| 43 | \( 1 + (-8.29 + 1.76i)T + (39.2 - 17.4i)T^{2} \) |
| 47 | \( 1 + (-3.70 - 11.4i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.443 - 4.21i)T + (-51.8 + 11.0i)T^{2} \) |
| 59 | \( 1 + (-5.35 + 5.94i)T + (-6.16 - 58.6i)T^{2} \) |
| 61 | \( 1 + 1.41T + 61T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.836 + 7.95i)T + (-69.4 + 14.7i)T^{2} \) |
| 73 | \( 1 + (-3.87 + 1.72i)T + (48.8 - 54.2i)T^{2} \) |
| 79 | \( 1 + (-10.3 - 4.60i)T + (52.8 + 58.7i)T^{2} \) |
| 83 | \( 1 + (-9.46 - 10.5i)T + (-8.67 + 82.5i)T^{2} \) |
| 89 | \( 1 + (5.72 + 4.15i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (6.47 + 4.70i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83877315101368497309490341188, −9.559032662429573092952990385870, −9.216434944139012975112134388248, −8.164000552601992227948529800664, −7.19237558695368592651088892243, −6.03045888342874098772954742485, −5.65328580767846694534502396537, −4.91149932881845190906234437916, −3.54181380540303562117851888183, −2.41959698738421559777251983737,
0.41615967259475292053876208177, 1.19967184586908385755097911037, 2.46754116402761816738830548634, 3.82523691270712967697827023142, 5.22820309411181465677200146852, 6.16592004785313063768460803564, 6.79105110897895366601007251829, 7.46988308013988823908073153063, 8.384925314968503849948991975864, 9.891377691549306531452186023308