Properties

Label 2-31e2-31.7-c1-0-40
Degree $2$
Conductor $961$
Sign $-0.892 + 0.451i$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.213 − 0.655i)2-s + (−0.882 + 0.187i)3-s + (1.23 − 0.896i)4-s + (−1.85 + 3.21i)5-s + (0.311 + 0.538i)6-s + (0.697 + 0.310i)7-s + (−1.96 − 1.42i)8-s + (−1.99 + 0.888i)9-s + (2.50 + 0.531i)10-s + (−0.430 − 4.09i)11-s + (−0.920 + 1.02i)12-s + (1.94 + 2.16i)13-s + (0.0550 − 0.523i)14-s + (1.03 − 3.18i)15-s + (0.424 − 1.30i)16-s + (0.136 − 1.30i)17-s + ⋯
L(s)  = 1  + (−0.150 − 0.463i)2-s + (−0.509 + 0.108i)3-s + (0.616 − 0.448i)4-s + (−0.829 + 1.43i)5-s + (0.127 + 0.219i)6-s + (0.263 + 0.117i)7-s + (−0.695 − 0.505i)8-s + (−0.665 + 0.296i)9-s + (0.790 + 0.168i)10-s + (−0.129 − 1.23i)11-s + (−0.265 + 0.295i)12-s + (0.540 + 0.599i)13-s + (0.0147 − 0.139i)14-s + (0.266 − 0.821i)15-s + (0.106 − 0.326i)16-s + (0.0331 − 0.315i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.892 + 0.451i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.892 + 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-0.892 + 0.451i$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{961} (844, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ -0.892 + 0.451i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0882345 - 0.370073i\)
\(L(\frac12)\) \(\approx\) \(0.0882345 - 0.370073i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + (0.213 + 0.655i)T + (-1.61 + 1.17i)T^{2} \)
3 \( 1 + (0.882 - 0.187i)T + (2.74 - 1.22i)T^{2} \)
5 \( 1 + (1.85 - 3.21i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 + (-0.697 - 0.310i)T + (4.68 + 5.20i)T^{2} \)
11 \( 1 + (0.430 + 4.09i)T + (-10.7 + 2.28i)T^{2} \)
13 \( 1 + (-1.94 - 2.16i)T + (-1.35 + 12.9i)T^{2} \)
17 \( 1 + (-0.136 + 1.30i)T + (-16.6 - 3.53i)T^{2} \)
19 \( 1 + (2.54 - 2.82i)T + (-1.98 - 18.8i)T^{2} \)
23 \( 1 + (2.65 + 1.92i)T + (7.10 + 21.8i)T^{2} \)
29 \( 1 + (1.51 + 4.65i)T + (-23.4 + 17.0i)T^{2} \)
37 \( 1 + (5.20 + 9.01i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (0.739 + 0.157i)T + (37.4 + 16.6i)T^{2} \)
43 \( 1 + (-4.78 + 5.31i)T + (-4.49 - 42.7i)T^{2} \)
47 \( 1 + (0.270 - 0.833i)T + (-38.0 - 27.6i)T^{2} \)
53 \( 1 + (3.26 - 1.45i)T + (35.4 - 39.3i)T^{2} \)
59 \( 1 + (0.907 - 0.192i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + 2.31T + 61T^{2} \)
67 \( 1 + (-1.04 + 1.80i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (7.06 - 3.14i)T + (47.5 - 52.7i)T^{2} \)
73 \( 1 + (0.591 + 5.62i)T + (-71.4 + 15.1i)T^{2} \)
79 \( 1 + (1.47 - 14.0i)T + (-77.2 - 16.4i)T^{2} \)
83 \( 1 + (13.7 + 2.93i)T + (75.8 + 33.7i)T^{2} \)
89 \( 1 + (3.58 - 2.60i)T + (27.5 - 84.6i)T^{2} \)
97 \( 1 + (-4.26 + 3.10i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13032583272504032417690836677, −8.822205905020855721367347805178, −7.978649398271740135060453933837, −6.99701302275305556235243746160, −6.16394103674685706875132288756, −5.66655404363495170938009551253, −4.00083598524924956651553318617, −3.11448969857785892851786483845, −2.16324586879743578749384746307, −0.19021757285398163163520083963, 1.51478448855232530386434619079, 3.16903577103952793279841216389, 4.38359075465988848537246623811, 5.20144083949587712911733588333, 6.13055225061426434723347859674, 7.10557581393604363739165875587, 7.952150946857498188120448529005, 8.486836785647406932477792007378, 9.220257112597176905906310900455, 10.53117413876852034460446468149

Graph of the $Z$-function along the critical line