Properties

Label 2-31e2-31.7-c1-0-17
Degree $2$
Conductor $961$
Sign $0.987 + 0.159i$
Analytic cond. $7.67362$
Root an. cond. $2.77013$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.571 − 1.75i)2-s + (0.488 − 0.103i)3-s + (−1.15 + 0.836i)4-s + (−0.603 + 1.04i)5-s + (−0.461 − 0.800i)6-s + (3.41 + 1.51i)7-s + (−0.863 − 0.627i)8-s + (−2.51 + 1.11i)9-s + (2.18 + 0.464i)10-s + (−0.194 − 1.84i)11-s + (−0.475 + 0.528i)12-s + (3.46 + 3.85i)13-s + (0.721 − 6.86i)14-s + (−0.186 + 0.573i)15-s + (−1.48 + 4.58i)16-s + (−0.592 + 5.63i)17-s + ⋯
L(s)  = 1  + (−0.404 − 1.24i)2-s + (0.282 − 0.0599i)3-s + (−0.575 + 0.418i)4-s + (−0.269 + 0.467i)5-s + (−0.188 − 0.326i)6-s + (1.28 + 0.573i)7-s + (−0.305 − 0.221i)8-s + (−0.837 + 0.372i)9-s + (0.690 + 0.146i)10-s + (−0.0585 − 0.556i)11-s + (−0.137 + 0.152i)12-s + (0.962 + 1.06i)13-s + (0.192 − 1.83i)14-s + (−0.0481 + 0.148i)15-s + (−0.372 + 1.14i)16-s + (−0.143 + 1.36i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 + 0.159i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $0.987 + 0.159i$
Analytic conductor: \(7.67362\)
Root analytic conductor: \(2.77013\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{961} (844, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :1/2),\ 0.987 + 0.159i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.28651 - 0.103276i\)
\(L(\frac12)\) \(\approx\) \(1.28651 - 0.103276i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + (0.571 + 1.75i)T + (-1.61 + 1.17i)T^{2} \)
3 \( 1 + (-0.488 + 0.103i)T + (2.74 - 1.22i)T^{2} \)
5 \( 1 + (0.603 - 1.04i)T + (-2.5 - 4.33i)T^{2} \)
7 \( 1 + (-3.41 - 1.51i)T + (4.68 + 5.20i)T^{2} \)
11 \( 1 + (0.194 + 1.84i)T + (-10.7 + 2.28i)T^{2} \)
13 \( 1 + (-3.46 - 3.85i)T + (-1.35 + 12.9i)T^{2} \)
17 \( 1 + (0.592 - 5.63i)T + (-16.6 - 3.53i)T^{2} \)
19 \( 1 + (0.962 - 1.06i)T + (-1.98 - 18.8i)T^{2} \)
23 \( 1 + (2.86 + 2.08i)T + (7.10 + 21.8i)T^{2} \)
29 \( 1 + (0.424 + 1.30i)T + (-23.4 + 17.0i)T^{2} \)
37 \( 1 + (-2.25 - 3.89i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-4.61 - 0.981i)T + (37.4 + 16.6i)T^{2} \)
43 \( 1 + (4.38 - 4.87i)T + (-4.49 - 42.7i)T^{2} \)
47 \( 1 + (1.30 - 4.02i)T + (-38.0 - 27.6i)T^{2} \)
53 \( 1 + (-11.8 + 5.27i)T + (35.4 - 39.3i)T^{2} \)
59 \( 1 + (-2.13 + 0.453i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 - 2.68T + 61T^{2} \)
67 \( 1 + (1.44 - 2.49i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-8.22 + 3.66i)T + (47.5 - 52.7i)T^{2} \)
73 \( 1 + (0.439 + 4.18i)T + (-71.4 + 15.1i)T^{2} \)
79 \( 1 + (-1.17 + 11.1i)T + (-77.2 - 16.4i)T^{2} \)
83 \( 1 + (10.2 + 2.17i)T + (75.8 + 33.7i)T^{2} \)
89 \( 1 + (2.18 - 1.58i)T + (27.5 - 84.6i)T^{2} \)
97 \( 1 + (-6.70 + 4.87i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28557457298574441739901728487, −9.081020882321541841034483891215, −8.479902653438852197995836739917, −8.032036963828109105685717649466, −6.49147748827916008710575189652, −5.72665752157935638099770728236, −4.31186307742168483116154317295, −3.39134098169328783398272537836, −2.29636137579082978488743231732, −1.51757917515362284051865268184, 0.69039917045142791004863377872, 2.57083926841693240925944102271, 3.99082630315816987415398395612, 5.10482391162406175390192451046, 5.70200198127929919705640845374, 6.91059159147260560133679948889, 7.63922540996530740854827728691, 8.346046526186826343087266983741, 8.723944402384896500600655707785, 9.726429141352057251480853105281

Graph of the $Z$-function along the critical line