L(s) = 1 | − 1.85·2-s + (0.249 + 0.432i)3-s + 1.42·4-s + (−0.603 + 1.04i)5-s + (−0.461 − 0.800i)6-s + (−1.86 − 3.23i)7-s + 1.06·8-s + (1.37 − 2.38i)9-s + (1.11 − 1.93i)10-s + (−0.928 + 1.60i)11-s + (0.355 + 0.615i)12-s + (−2.59 + 4.48i)13-s + (3.45 + 5.98i)14-s − 0.602·15-s − 4.82·16-s + (−2.83 − 4.90i)17-s + ⋯ |
L(s) = 1 | − 1.30·2-s + (0.144 + 0.249i)3-s + 0.711·4-s + (−0.269 + 0.467i)5-s + (−0.188 − 0.326i)6-s + (−0.705 − 1.22i)7-s + 0.377·8-s + (0.458 − 0.794i)9-s + (0.353 − 0.611i)10-s + (−0.279 + 0.484i)11-s + (0.102 + 0.177i)12-s + (−0.718 + 1.24i)13-s + (0.922 + 1.59i)14-s − 0.155·15-s − 1.20·16-s + (−0.687 − 1.19i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.198 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.252714 + 0.309014i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.252714 + 0.309014i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + 1.85T + 2T^{2} \) |
| 3 | \( 1 + (-0.249 - 0.432i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.603 - 1.04i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.86 + 3.23i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.928 - 1.60i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.59 - 4.48i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.83 + 4.90i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.719 - 1.24i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 3.54T + 23T^{2} \) |
| 29 | \( 1 + 1.37T + 29T^{2} \) |
| 37 | \( 1 + (-2.25 - 3.89i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.35 + 4.08i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.27 - 5.68i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 4.22T + 47T^{2} \) |
| 53 | \( 1 + (6.48 - 11.2i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.09 - 1.88i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 2.68T + 61T^{2} \) |
| 67 | \( 1 + (1.44 - 2.49i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.50 - 7.79i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.10 - 3.64i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.61 - 9.72i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.23 - 9.07i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 2.70T + 89T^{2} \) |
| 97 | \( 1 + 8.29T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.862828926338043705462682178213, −9.589791585288934457948494586079, −8.922707727199202482604874014207, −7.57165491959393686960821546309, −7.07336929123276663669307203155, −6.67955401936973859313069516214, −4.71648712025559512005971947763, −4.01939233047940614284784667280, −2.73788507274966792712294464486, −1.11800141854986783003322332205,
0.33022784070307529084258305051, 1.95142847663836772393266232646, 2.95164449655473386545464731845, 4.60413289244142368525219724154, 5.52541137907514497958704250196, 6.62764851913054558555305830892, 7.68362312054657245790486729558, 8.258983709762988350334990367005, 8.856394521657120985661737132243, 9.628795475223198214510514314981