L(s) = 1 | + (1.22 + 1.22i)3-s + (−2.65 − 4.23i)5-s + (0.640 − 0.640i)7-s + 2.99i·9-s + 6.31·11-s + (−6.44 − 6.44i)13-s + (1.93 − 8.44i)15-s + (−7.85 + 7.85i)17-s − 9.85i·19-s + 1.56·21-s + (−10.1 − 10.1i)23-s + (−10.9 + 22.4i)25-s + (−3.67 + 3.67i)27-s − 21.5i·29-s − 0.233·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (−0.530 − 0.847i)5-s + (0.0914 − 0.0914i)7-s + 0.333i·9-s + 0.574·11-s + (−0.495 − 0.495i)13-s + (0.129 − 0.562i)15-s + (−0.462 + 0.462i)17-s − 0.518i·19-s + 0.0746·21-s + (−0.442 − 0.442i)23-s + (−0.436 + 0.899i)25-s + (−0.136 + 0.136i)27-s − 0.742i·29-s − 0.00752·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.702 + 0.711i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.702 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.8727040138\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8727040138\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.22 - 1.22i)T \) |
| 5 | \( 1 + (2.65 + 4.23i)T \) |
good | 7 | \( 1 + (-0.640 + 0.640i)T - 49iT^{2} \) |
| 11 | \( 1 - 6.31T + 121T^{2} \) |
| 13 | \( 1 + (6.44 + 6.44i)T + 169iT^{2} \) |
| 17 | \( 1 + (7.85 - 7.85i)T - 289iT^{2} \) |
| 19 | \( 1 + 9.85iT - 361T^{2} \) |
| 23 | \( 1 + (10.1 + 10.1i)T + 529iT^{2} \) |
| 29 | \( 1 + 21.5iT - 841T^{2} \) |
| 31 | \( 1 + 0.233T + 961T^{2} \) |
| 37 | \( 1 + (-11.1 + 11.1i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 22.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + (39.3 + 39.3i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (19.3 - 19.3i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (61.2 + 61.2i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 91.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 1.60T + 3.72e3T^{2} \) |
| 67 | \( 1 + (63.8 - 63.8i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 120.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-62.8 - 62.8i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 68.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (63.8 + 63.8i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 104. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-38.5 + 38.5i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.456982657309816142040269025216, −8.637603195614320483150106633442, −8.065766667582245392577821191739, −7.13447037942510770311852020750, −5.98666323779675185557787551276, −4.85456139984230981802080927017, −4.24700077847743561184947436745, −3.21404157794570278206573128853, −1.81131238376415904695580497393, −0.25346346689475379027468252259,
1.61858779223939276106665987173, 2.79564720525715068328374027717, 3.71722151903109365374896262314, 4.74058599239633751926806865251, 6.12826941315012304820956068624, 6.86777668388770620865033576160, 7.54920943135955738413244761857, 8.379663316112248781192555600869, 9.292707492240419869812049160368, 10.08094680480193586813692184836