L(s) = 1 | + 3-s + (−1.76 + 1.37i)5-s + (−0.159 + 0.159i)7-s + 9-s + (−1.60 − 1.60i)11-s + 4.36i·13-s + (−1.76 + 1.37i)15-s + (−4.63 + 4.63i)17-s + (−3.97 − 3.97i)19-s + (−0.159 + 0.159i)21-s + (5.58 + 5.58i)23-s + (1.20 − 4.85i)25-s + 27-s + (−6.25 + 6.25i)29-s + 1.69i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + (−0.787 + 0.615i)5-s + (−0.0602 + 0.0602i)7-s + 0.333·9-s + (−0.485 − 0.485i)11-s + 1.21i·13-s + (−0.454 + 0.355i)15-s + (−1.12 + 1.12i)17-s + (−0.912 − 0.912i)19-s + (−0.0348 + 0.0348i)21-s + (1.16 + 1.16i)23-s + (0.241 − 0.970i)25-s + 0.192·27-s + (−1.16 + 1.16i)29-s + 0.304i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.399405 + 0.855527i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.399405 + 0.855527i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (1.76 - 1.37i)T \) |
good | 7 | \( 1 + (0.159 - 0.159i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.60 + 1.60i)T + 11iT^{2} \) |
| 13 | \( 1 - 4.36iT - 13T^{2} \) |
| 17 | \( 1 + (4.63 - 4.63i)T - 17iT^{2} \) |
| 19 | \( 1 + (3.97 + 3.97i)T + 19iT^{2} \) |
| 23 | \( 1 + (-5.58 - 5.58i)T + 23iT^{2} \) |
| 29 | \( 1 + (6.25 - 6.25i)T - 29iT^{2} \) |
| 31 | \( 1 - 1.69iT - 31T^{2} \) |
| 37 | \( 1 + 0.609iT - 37T^{2} \) |
| 41 | \( 1 + 0.538iT - 41T^{2} \) |
| 43 | \( 1 - 0.592iT - 43T^{2} \) |
| 47 | \( 1 + (4.85 + 4.85i)T + 47iT^{2} \) |
| 53 | \( 1 + 4.82T + 53T^{2} \) |
| 59 | \( 1 + (5.78 - 5.78i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1.65 - 1.65i)T + 61iT^{2} \) |
| 67 | \( 1 + 0.485iT - 67T^{2} \) |
| 71 | \( 1 + 6.86T + 71T^{2} \) |
| 73 | \( 1 + (0.160 - 0.160i)T - 73iT^{2} \) |
| 79 | \( 1 - 7.13T + 79T^{2} \) |
| 83 | \( 1 - 6.88T + 83T^{2} \) |
| 89 | \( 1 - 17.0T + 89T^{2} \) |
| 97 | \( 1 + (-9.64 + 9.64i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59227111779801904484529424600, −9.124717627062371745266067031636, −8.849614166997807463237344433623, −7.78656564883333024077079899226, −7.00302677874579309679780763161, −6.32672843483025581737668478659, −4.87083601656267944645155070362, −3.94629776699935727464161081488, −3.07956788137075049586958530804, −1.89767656032385830369954035936,
0.38799710493941765343744282812, 2.20809821219807488696474788352, 3.31812055254389359988814680677, 4.41421757033410371114788356224, 5.08637640564920940297480722741, 6.40939899944762547147945041087, 7.48803344664947339719635294789, 8.026849043374878960292966249982, 8.809686496887360086012748695317, 9.595958443687811904121447405888