| L(s) = 1 | + 3-s + (−0.456 − 2.18i)5-s + 4.37i·7-s + 9-s + 5.58i·11-s − 4.37·13-s + (−0.456 − 2.18i)15-s + 5.58i·17-s − 4i·19-s + 4.37i·21-s + (−4.58 + 1.99i)25-s + 27-s + 2.55i·29-s − 5.29·31-s + 5.58i·33-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + (−0.204 − 0.978i)5-s + 1.65i·7-s + 0.333·9-s + 1.68i·11-s − 1.21·13-s + (−0.117 − 0.565i)15-s + 1.35i·17-s − 0.917i·19-s + 0.955i·21-s + (−0.916 + 0.399i)25-s + 0.192·27-s + 0.473i·29-s − 0.950·31-s + 0.971i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0560 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0560 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.05926 + 1.00150i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.05926 + 1.00150i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.456 + 2.18i)T \) |
| good | 7 | \( 1 - 4.37iT - 7T^{2} \) |
| 11 | \( 1 - 5.58iT - 11T^{2} \) |
| 13 | \( 1 + 4.37T + 13T^{2} \) |
| 17 | \( 1 - 5.58iT - 17T^{2} \) |
| 19 | \( 1 + 4iT - 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 2.55iT - 29T^{2} \) |
| 31 | \( 1 + 5.29T + 31T^{2} \) |
| 37 | \( 1 + 2.55T + 37T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 - 11.1T + 43T^{2} \) |
| 47 | \( 1 - 6.92iT - 47T^{2} \) |
| 53 | \( 1 - 7.84T + 53T^{2} \) |
| 59 | \( 1 - 1.58iT - 59T^{2} \) |
| 61 | \( 1 + 10.5iT - 61T^{2} \) |
| 67 | \( 1 - 3.16T + 67T^{2} \) |
| 71 | \( 1 - 6.92T + 71T^{2} \) |
| 73 | \( 1 - 12iT - 73T^{2} \) |
| 79 | \( 1 - 5.29T + 79T^{2} \) |
| 83 | \( 1 + 7.16T + 83T^{2} \) |
| 89 | \( 1 + 2T + 89T^{2} \) |
| 97 | \( 1 + 11.1iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.820872458787831795032459313760, −9.310086737308962918725870432729, −8.720176738424043637634655264689, −7.83624873746902288866709188310, −7.03189858598462201853236789256, −5.71298505598631503909741211401, −4.94020345652817682347598384140, −4.13604111549093705642502881919, −2.55132825045072329110727062228, −1.85290777608434368963523476933,
0.61288261987233158384582365943, 2.51053011147161541989957919108, 3.46831383338552390302390837986, 4.14252665933310965606549318476, 5.51954612416174047459302880557, 6.68566910118218365546278963836, 7.46621453112574973703351386091, 7.80862500764860151393831061846, 9.062585850330500893700804775788, 9.965266253891766129945271765989