Properties

Label 2-96-24.5-c10-0-14
Degree $2$
Conductor $96$
Sign $1$
Analytic cond. $60.9942$
Root an. cond. $7.80988$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 243·3-s − 5.28e3·5-s − 2.49e4·7-s + 5.90e4·9-s − 2.27e5·11-s − 1.28e6·15-s − 6.06e6·21-s + 1.81e7·25-s + 1.43e7·27-s + 3.63e7·29-s + 8.95e6·31-s − 5.51e7·33-s + 1.31e8·35-s − 3.11e8·45-s + 3.40e8·49-s − 6.17e8·53-s + 1.19e9·55-s − 5.88e8·59-s − 1.47e9·63-s + 4.08e9·73-s + 4.40e9·75-s + 5.66e9·77-s + 5.86e9·79-s + 3.48e9·81-s − 7.87e9·83-s + 8.82e9·87-s + 2.17e9·93-s + ⋯
L(s)  = 1  + 3-s − 1.69·5-s − 1.48·7-s + 9-s − 1.40·11-s − 1.69·15-s − 1.48·21-s + 1.85·25-s + 27-s + 1.77·29-s + 0.312·31-s − 1.40·33-s + 2.50·35-s − 1.69·45-s + 1.20·49-s − 1.47·53-s + 2.38·55-s − 0.823·59-s − 1.48·63-s + 1.96·73-s + 1.85·75-s + 2.09·77-s + 1.90·79-s + 81-s − 1.99·83-s + 1.77·87-s + 0.312·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(96\)    =    \(2^{5} \cdot 3\)
Sign: $1$
Analytic conductor: \(60.9942\)
Root analytic conductor: \(7.80988\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: $\chi_{96} (17, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 96,\ (\ :5),\ 1)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(1.168613159\)
\(L(\frac12)\) \(\approx\) \(1.168613159\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{5} T \)
good5 \( 1 + 5282 T + p^{10} T^{2} \)
7 \( 1 + 24950 T + p^{10} T^{2} \)
11 \( 1 + 227050 T + p^{10} T^{2} \)
13 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
17 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
19 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
23 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
29 \( 1 - 36304750 T + p^{10} T^{2} \)
31 \( 1 - 8955802 T + p^{10} T^{2} \)
37 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
41 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
43 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
47 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
53 \( 1 + 617985986 T + p^{10} T^{2} \)
59 \( 1 + 588563050 T + p^{10} T^{2} \)
61 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
67 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
71 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
73 \( 1 - 4081435250 T + p^{10} T^{2} \)
79 \( 1 - 5863410298 T + p^{10} T^{2} \)
83 \( 1 + 7877173786 T + p^{10} T^{2} \)
89 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
97 \( 1 + 9031061950 T + p^{10} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.27040797229239969080521096916, −10.74577890550363774737727686040, −9.735304985792071119913440767385, −8.441022660896353596607769369002, −7.70881284737300608400544406470, −6.66570295655420825858187479393, −4.62970825339288549100463800899, −3.43274519888888448201690433126, −2.76255533541464003257465615404, −0.52769180208082321220316023642, 0.52769180208082321220316023642, 2.76255533541464003257465615404, 3.43274519888888448201690433126, 4.62970825339288549100463800899, 6.66570295655420825858187479393, 7.70881284737300608400544406470, 8.441022660896353596607769369002, 9.735304985792071119913440767385, 10.74577890550363774737727686040, 12.27040797229239969080521096916

Graph of the $Z$-function along the critical line