| L(s) = 1 | + (−1.22 + 0.707i)2-s + (0.275 − 0.158i)3-s + (0.999 − 1.73i)4-s + (−1.22 − 0.707i)5-s + (−0.224 + 0.389i)6-s + (−2 − 1.73i)7-s + 2.82i·8-s + (−1.44 + 2.51i)9-s + 2·10-s + (−0.275 + 0.158i)11-s − 0.635i·12-s − 2.51i·13-s + (3.67 + 0.707i)14-s − 0.449·15-s + (−2.00 − 3.46i)16-s + (0.5 + 0.866i)17-s + ⋯ |
| L(s) = 1 | + (−0.866 + 0.499i)2-s + (0.158 − 0.0917i)3-s + (0.499 − 0.866i)4-s + (−0.547 − 0.316i)5-s + (−0.0917 + 0.158i)6-s + (−0.755 − 0.654i)7-s + 0.999i·8-s + (−0.483 + 0.836i)9-s + 0.632·10-s + (−0.0829 + 0.0479i)11-s − 0.183i·12-s − 0.696i·13-s + (0.981 + 0.188i)14-s − 0.116·15-s + (−0.500 − 0.866i)16-s + (0.121 + 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.126 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 952 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.126 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.481208 + 0.423777i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.481208 + 0.423777i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.22 - 0.707i)T \) |
| 7 | \( 1 + (2 + 1.73i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| good | 3 | \( 1 + (-0.275 + 0.158i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.22 + 0.707i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.275 - 0.158i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2.51iT - 13T^{2} \) |
| 19 | \( 1 + (-6 - 3.46i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4.87iT - 29T^{2} \) |
| 31 | \( 1 + (3.44 + 5.97i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-7.34 - 4.24i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 7.34T + 41T^{2} \) |
| 43 | \( 1 - 7.70iT - 43T^{2} \) |
| 47 | \( 1 + (2.44 - 4.24i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.72 + 3.30i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.22 + 4.17i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6 - 3.46i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.34 - 2.51i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 + (-6.22 - 10.7i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.05 + 1.81i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 14.1iT - 83T^{2} \) |
| 89 | \( 1 + (6.39 - 11.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 13.5T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.862884877022682663368555844189, −9.604221013961453802710309473094, −8.204845062948259139135865220298, −7.889584610325606247248317080508, −7.18650948702057845692245947837, −5.96865434171928277056726804475, −5.31174550649267067614243408877, −3.91634924473445022482679498971, −2.69842406090971806462261920673, −1.08845522525120845197712319335,
0.46186646110868511154285772002, 2.38526100574287342550872140980, 3.22478047913895809189945311442, 4.05871142094889206934151636753, 5.70964866069682878920233431846, 6.70016033639347155425016912764, 7.38331456286771723061072970428, 8.419942226424659331855119929624, 9.222184250974530347173618557177, 9.566606933554789038331932404395