Properties

Label 2-950-1.1-c5-0-135
Degree $2$
Conductor $950$
Sign $-1$
Analytic cond. $152.364$
Root an. cond. $12.3436$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 24.4·3-s + 16·4-s − 97.9·6-s + 101.·7-s − 64·8-s + 356.·9-s + 291.·11-s + 391.·12-s − 1.13e3·13-s − 405.·14-s + 256·16-s + 259.·17-s − 1.42e3·18-s + 361·19-s + 2.47e3·21-s − 1.16e3·22-s − 3.90e3·23-s − 1.56e3·24-s + 4.52e3·26-s + 2.77e3·27-s + 1.62e3·28-s − 183.·29-s − 9.67e3·31-s − 1.02e3·32-s + 7.12e3·33-s − 1.03e3·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.57·3-s + 0.5·4-s − 1.11·6-s + 0.781·7-s − 0.353·8-s + 1.46·9-s + 0.725·11-s + 0.785·12-s − 1.85·13-s − 0.552·14-s + 0.250·16-s + 0.217·17-s − 1.03·18-s + 0.229·19-s + 1.22·21-s − 0.513·22-s − 1.53·23-s − 0.555·24-s + 1.31·26-s + 0.731·27-s + 0.390·28-s − 0.0404·29-s − 1.80·31-s − 0.176·32-s + 1.13·33-s − 0.153·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(152.364\)
Root analytic conductor: \(12.3436\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 950,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
5 \( 1 \)
19 \( 1 - 361T \)
good3 \( 1 - 24.4T + 243T^{2} \)
7 \( 1 - 101.T + 1.68e4T^{2} \)
11 \( 1 - 291.T + 1.61e5T^{2} \)
13 \( 1 + 1.13e3T + 3.71e5T^{2} \)
17 \( 1 - 259.T + 1.41e6T^{2} \)
23 \( 1 + 3.90e3T + 6.43e6T^{2} \)
29 \( 1 + 183.T + 2.05e7T^{2} \)
31 \( 1 + 9.67e3T + 2.86e7T^{2} \)
37 \( 1 - 986.T + 6.93e7T^{2} \)
41 \( 1 + 1.70e4T + 1.15e8T^{2} \)
43 \( 1 - 9.89e3T + 1.47e8T^{2} \)
47 \( 1 + 8.57e3T + 2.29e8T^{2} \)
53 \( 1 + 3.10e4T + 4.18e8T^{2} \)
59 \( 1 - 3.61e4T + 7.14e8T^{2} \)
61 \( 1 + 1.82e4T + 8.44e8T^{2} \)
67 \( 1 + 2.63e4T + 1.35e9T^{2} \)
71 \( 1 - 6.52e4T + 1.80e9T^{2} \)
73 \( 1 - 2.30e4T + 2.07e9T^{2} \)
79 \( 1 + 2.82e3T + 3.07e9T^{2} \)
83 \( 1 + 7.65e4T + 3.93e9T^{2} \)
89 \( 1 + 5.84e4T + 5.58e9T^{2} \)
97 \( 1 - 1.06e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.895832939454158057686770398459, −8.012361691001192540172542479488, −7.62313623938788151241659552787, −6.77703521594221374947354613612, −5.33260280352784808750067404915, −4.20814470841334358701730536344, −3.22543064903643959645097831519, −2.15131089258498834453371036404, −1.63476139380048187218298034879, 0, 1.63476139380048187218298034879, 2.15131089258498834453371036404, 3.22543064903643959645097831519, 4.20814470841334358701730536344, 5.33260280352784808750067404915, 6.77703521594221374947354613612, 7.62313623938788151241659552787, 8.012361691001192540172542479488, 8.895832939454158057686770398459

Graph of the $Z$-function along the critical line