Properties

Label 2-950-1.1-c3-0-33
Degree $2$
Conductor $950$
Sign $1$
Analytic cond. $56.0518$
Root an. cond. $7.48677$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 4·4-s + 4·6-s − 8·7-s + 8·8-s − 23·9-s + 44·11-s + 8·12-s − 16·14-s + 16·16-s + 74·17-s − 46·18-s + 19·19-s − 16·21-s + 88·22-s − 84·23-s + 16·24-s − 100·27-s − 32·28-s + 266·29-s + 136·31-s + 32·32-s + 88·33-s + 148·34-s − 92·36-s − 424·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.384·3-s + 1/2·4-s + 0.272·6-s − 0.431·7-s + 0.353·8-s − 0.851·9-s + 1.20·11-s + 0.192·12-s − 0.305·14-s + 1/4·16-s + 1.05·17-s − 0.602·18-s + 0.229·19-s − 0.166·21-s + 0.852·22-s − 0.761·23-s + 0.136·24-s − 0.712·27-s − 0.215·28-s + 1.70·29-s + 0.787·31-s + 0.176·32-s + 0.464·33-s + 0.746·34-s − 0.425·36-s − 1.88·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(56.0518\)
Root analytic conductor: \(7.48677\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 950,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.845375495\)
\(L(\frac12)\) \(\approx\) \(3.845375495\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 \)
19 \( 1 - p T \)
good3 \( 1 - 2 T + p^{3} T^{2} \)
7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 - 4 p T + p^{3} T^{2} \)
13 \( 1 + p^{3} T^{2} \)
17 \( 1 - 74 T + p^{3} T^{2} \)
23 \( 1 + 84 T + p^{3} T^{2} \)
29 \( 1 - 266 T + p^{3} T^{2} \)
31 \( 1 - 136 T + p^{3} T^{2} \)
37 \( 1 + 424 T + p^{3} T^{2} \)
41 \( 1 - 470 T + p^{3} T^{2} \)
43 \( 1 - 236 T + p^{3} T^{2} \)
47 \( 1 - 240 T + p^{3} T^{2} \)
53 \( 1 + 36 T + p^{3} T^{2} \)
59 \( 1 - 736 T + p^{3} T^{2} \)
61 \( 1 - 650 T + p^{3} T^{2} \)
67 \( 1 - 830 T + p^{3} T^{2} \)
71 \( 1 + 216 T + p^{3} T^{2} \)
73 \( 1 + 254 T + p^{3} T^{2} \)
79 \( 1 + 1220 T + p^{3} T^{2} \)
83 \( 1 - 688 T + p^{3} T^{2} \)
89 \( 1 - 102 T + p^{3} T^{2} \)
97 \( 1 - 1280 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.686546748191192949047116150339, −8.770323777938274341720523001103, −8.003556907006720126630005231341, −6.92631040859535809444346283162, −6.15516864450153892965121762221, −5.36585979044383558714186630595, −4.12743951225125155148413079329, −3.35806608768270544146569356912, −2.42379109088933040786155653206, −0.964209094043970544780360757486, 0.964209094043970544780360757486, 2.42379109088933040786155653206, 3.35806608768270544146569356912, 4.12743951225125155148413079329, 5.36585979044383558714186630595, 6.15516864450153892965121762221, 6.92631040859535809444346283162, 8.003556907006720126630005231341, 8.770323777938274341720523001103, 9.686546748191192949047116150339

Graph of the $Z$-function along the critical line