Properties

Label 2-95-95.67-c1-0-7
Degree $2$
Conductor $95$
Sign $-0.840 + 0.541i$
Analytic cond. $0.758578$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.371 + 0.259i)2-s + (−3.02 − 0.264i)3-s + (−0.613 − 1.68i)4-s + (−2.23 + 0.122i)5-s + (−1.05 − 0.884i)6-s + (−1.89 + 0.508i)7-s + (0.444 − 1.66i)8-s + (6.13 + 1.08i)9-s + (−0.860 − 0.534i)10-s + (0.238 + 0.412i)11-s + (1.41 + 5.26i)12-s + (−0.364 − 4.16i)13-s + (−0.836 − 0.304i)14-s + (6.79 + 0.219i)15-s + (−2.15 + 1.80i)16-s + (−0.463 + 0.661i)17-s + ⋯
L(s)  = 1  + (0.262 + 0.183i)2-s + (−1.74 − 0.152i)3-s + (−0.306 − 0.843i)4-s + (−0.998 + 0.0549i)5-s + (−0.430 − 0.361i)6-s + (−0.717 + 0.192i)7-s + (0.157 − 0.587i)8-s + (2.04 + 0.360i)9-s + (−0.272 − 0.169i)10-s + (0.0717 + 0.124i)11-s + (0.407 + 1.52i)12-s + (−0.101 − 1.15i)13-s + (−0.223 − 0.0813i)14-s + (1.75 + 0.0566i)15-s + (−0.538 + 0.451i)16-s + (−0.112 + 0.160i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.840 + 0.541i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.840 + 0.541i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $-0.840 + 0.541i$
Analytic conductor: \(0.758578\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{95} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :1/2),\ -0.840 + 0.541i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0691434 - 0.234981i\)
\(L(\frac12)\) \(\approx\) \(0.0691434 - 0.234981i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (2.23 - 0.122i)T \)
19 \( 1 + (2.59 + 3.49i)T \)
good2 \( 1 + (-0.371 - 0.259i)T + (0.684 + 1.87i)T^{2} \)
3 \( 1 + (3.02 + 0.264i)T + (2.95 + 0.520i)T^{2} \)
7 \( 1 + (1.89 - 0.508i)T + (6.06 - 3.5i)T^{2} \)
11 \( 1 + (-0.238 - 0.412i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (0.364 + 4.16i)T + (-12.8 + 2.25i)T^{2} \)
17 \( 1 + (0.463 - 0.661i)T + (-5.81 - 15.9i)T^{2} \)
23 \( 1 + (1.97 - 4.23i)T + (-14.7 - 17.6i)T^{2} \)
29 \( 1 + (-0.693 + 3.93i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (8.78 + 5.07i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-4.48 + 4.48i)T - 37iT^{2} \)
41 \( 1 + (-4.84 - 5.77i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-0.992 + 0.462i)T + (27.6 - 32.9i)T^{2} \)
47 \( 1 + (-7.61 + 5.33i)T + (16.0 - 44.1i)T^{2} \)
53 \( 1 + (6.51 + 3.03i)T + (34.0 + 40.6i)T^{2} \)
59 \( 1 + (-0.304 - 1.72i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (3.30 - 1.20i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (1.74 + 2.48i)T + (-22.9 + 62.9i)T^{2} \)
71 \( 1 + (0.907 - 2.49i)T + (-54.3 - 45.6i)T^{2} \)
73 \( 1 + (-0.0344 + 0.394i)T + (-71.8 - 12.6i)T^{2} \)
79 \( 1 + (-3.51 + 2.95i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-2.03 - 7.60i)T + (-71.8 + 41.5i)T^{2} \)
89 \( 1 + (0.225 + 0.189i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (-3.38 - 2.37i)T + (33.1 + 91.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15536696220456428020163642239, −12.55730478719834662820982550027, −11.33948264579364915584616287542, −10.65665499253979652636778387275, −9.510529278335987307218814037124, −7.49725032890805686555993497660, −6.31425274287699602574035252681, −5.46229264854739773580428427893, −4.20711316453361540309826138924, −0.32833454403412219959521774606, 3.83185910161799838516766292125, 4.74539039350521280764322317876, 6.38745259454021127745560834948, 7.41731859145687288269648131440, 9.014861811809624918022617145923, 10.60093160722213136090049874555, 11.43300028168310887617554663469, 12.34318106698798955820295042541, 12.71550579001385182996831055243, 14.33286144089729724979620092038

Graph of the $Z$-function along the critical line