Properties

Label 2-95-95.74-c1-0-2
Degree $2$
Conductor $95$
Sign $0.404 - 0.914i$
Analytic cond. $0.758578$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.45 + 0.256i)2-s + (−1.59 + 1.90i)3-s + (0.176 + 0.0642i)4-s + (0.658 + 2.13i)5-s + (−2.81 + 2.36i)6-s + (2.81 − 1.62i)7-s + (−2.32 − 1.34i)8-s + (−0.549 − 3.11i)9-s + (0.410 + 3.28i)10-s + (2.09 − 3.62i)11-s + (−0.404 + 0.233i)12-s + (1.14 + 1.36i)13-s + (4.51 − 1.64i)14-s + (−5.11 − 2.15i)15-s + (−3.32 − 2.79i)16-s + (−6.23 − 1.09i)17-s + ⋯
L(s)  = 1  + (1.03 + 0.181i)2-s + (−0.921 + 1.09i)3-s + (0.0883 + 0.0321i)4-s + (0.294 + 0.955i)5-s + (−1.14 + 0.963i)6-s + (1.06 − 0.614i)7-s + (−0.820 − 0.473i)8-s + (−0.183 − 1.03i)9-s + (0.129 + 1.03i)10-s + (0.630 − 1.09i)11-s + (−0.116 + 0.0673i)12-s + (0.318 + 0.379i)13-s + (1.20 − 0.439i)14-s + (−1.32 − 0.557i)15-s + (−0.831 − 0.697i)16-s + (−1.51 − 0.266i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.404 - 0.914i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.404 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $0.404 - 0.914i$
Analytic conductor: \(0.758578\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{95} (74, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :1/2),\ 0.404 - 0.914i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.04953 + 0.683475i\)
\(L(\frac12)\) \(\approx\) \(1.04953 + 0.683475i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.658 - 2.13i)T \)
19 \( 1 + (-4.09 - 1.49i)T \)
good2 \( 1 + (-1.45 - 0.256i)T + (1.87 + 0.684i)T^{2} \)
3 \( 1 + (1.59 - 1.90i)T + (-0.520 - 2.95i)T^{2} \)
7 \( 1 + (-2.81 + 1.62i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (-2.09 + 3.62i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-1.14 - 1.36i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (6.23 + 1.09i)T + (15.9 + 5.81i)T^{2} \)
23 \( 1 + (-0.490 + 1.34i)T + (-17.6 - 14.7i)T^{2} \)
29 \( 1 + (-0.0589 - 0.334i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-1.38 - 2.40i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 2.70iT - 37T^{2} \)
41 \( 1 + (5.46 + 4.58i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (3.38 + 9.29i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (0.438 - 0.0773i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 + (2.47 - 6.80i)T + (-40.6 - 34.0i)T^{2} \)
59 \( 1 + (0.545 - 3.09i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (-2.88 - 1.04i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-8.42 + 1.48i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (12.1 - 4.40i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (-1.17 + 1.39i)T + (-12.6 - 71.8i)T^{2} \)
79 \( 1 + (0.535 + 0.449i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (0.478 - 0.276i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (5.23 - 4.38i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (-13.0 - 2.29i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.03296113526007883231948614600, −13.70272155319164935146049812595, −11.71409192543115686977852522864, −11.18034788694087811190339194326, −10.24444697306349787914751415169, −8.902709175870794215893044476455, −6.81949984157408828171355947821, −5.75940246324452233608639221663, −4.66632448902556127107575467227, −3.63380826760366207635408809333, 1.82137324990838993334138122889, 4.56987795486181824661303660507, 5.36905848801865434833442058861, 6.51667459186000841284198576728, 8.122329621420413423394407280572, 9.290452535172336242509330600991, 11.47403759787510355118685029025, 11.81711083193540393122411456907, 12.87735162187193078195072456296, 13.29982276507618406865121514417

Graph of the $Z$-function along the critical line