Properties

Label 2-95-95.74-c1-0-4
Degree $2$
Conductor $95$
Sign $0.988 + 0.153i$
Analytic cond. $0.758578$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.20 + 0.212i)2-s + (0.517 − 0.616i)3-s + (−0.477 − 0.173i)4-s + (2.06 − 0.857i)5-s + (0.752 − 0.631i)6-s + (−3.28 + 1.89i)7-s + (−2.65 − 1.53i)8-s + (0.408 + 2.31i)9-s + (2.66 − 0.593i)10-s + (0.618 − 1.07i)11-s + (−0.353 + 0.204i)12-s + (2.22 + 2.64i)13-s + (−4.35 + 1.58i)14-s + (0.539 − 1.71i)15-s + (−2.08 − 1.75i)16-s + (−2.96 − 0.522i)17-s + ⋯
L(s)  = 1  + (0.850 + 0.149i)2-s + (0.298 − 0.355i)3-s + (−0.238 − 0.0868i)4-s + (0.923 − 0.383i)5-s + (0.307 − 0.257i)6-s + (−1.24 + 0.716i)7-s + (−0.937 − 0.541i)8-s + (0.136 + 0.772i)9-s + (0.843 − 0.187i)10-s + (0.186 − 0.323i)11-s + (−0.102 + 0.0589i)12-s + (0.616 + 0.734i)13-s + (−1.16 + 0.423i)14-s + (0.139 − 0.443i)15-s + (−0.522 − 0.438i)16-s + (−0.718 − 0.126i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.153i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $0.988 + 0.153i$
Analytic conductor: \(0.758578\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{95} (74, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :1/2),\ 0.988 + 0.153i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.43106 - 0.110737i\)
\(L(\frac12)\) \(\approx\) \(1.43106 - 0.110737i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-2.06 + 0.857i)T \)
19 \( 1 + (4.28 + 0.793i)T \)
good2 \( 1 + (-1.20 - 0.212i)T + (1.87 + 0.684i)T^{2} \)
3 \( 1 + (-0.517 + 0.616i)T + (-0.520 - 2.95i)T^{2} \)
7 \( 1 + (3.28 - 1.89i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (-0.618 + 1.07i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-2.22 - 2.64i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (2.96 + 0.522i)T + (15.9 + 5.81i)T^{2} \)
23 \( 1 + (-2.10 + 5.77i)T + (-17.6 - 14.7i)T^{2} \)
29 \( 1 + (-0.744 - 4.22i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (2.55 + 4.41i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 9.13iT - 37T^{2} \)
41 \( 1 + (-4.08 - 3.42i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-3.12 - 8.57i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (-7.19 + 1.26i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 + (1.13 - 3.13i)T + (-40.6 - 34.0i)T^{2} \)
59 \( 1 + (-0.141 + 0.804i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (6.01 + 2.18i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (0.995 - 0.175i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (12.8 - 4.67i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (-7.11 + 8.47i)T + (-12.6 - 71.8i)T^{2} \)
79 \( 1 + (-1.06 - 0.889i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (2.18 - 1.26i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (2.06 - 1.73i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (3.01 + 0.531i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78389339362155878313703625615, −12.96558491775284158504813189501, −12.60859903938745530341193498611, −10.76839982290686887056258143202, −9.277374485833200937089781234008, −8.813690366806223688913503656411, −6.60819372563672806409462371784, −5.87404679333380363921720981004, −4.43857670263145102710728498298, −2.56941927728426093442666991826, 3.08916243635281795389953222876, 4.07397152468920828210157550610, 5.83332122351041303587087010490, 6.78981378585480113519709697467, 8.850586318747257896129783206630, 9.698834573518325536598792585154, 10.67841223938001807611506235997, 12.34432396725861807432324198366, 13.23208303310958763173447913516, 13.73284269366884100562475917746

Graph of the $Z$-function along the critical line