L(s) = 1 | + (−0.484 − 0.406i)2-s + (−1.80 + 0.656i)3-s + (−0.277 − 1.57i)4-s + (0.173 − 0.984i)5-s + (1.14 + 0.415i)6-s + (−2.04 − 3.54i)7-s + (−1.13 + 1.97i)8-s + (0.524 − 0.440i)9-s + (−0.484 + 0.406i)10-s + (2.17 − 3.76i)11-s + (1.53 + 2.65i)12-s + (−1.45 − 0.530i)13-s + (−0.449 + 2.54i)14-s + (0.333 + 1.89i)15-s + (−1.65 + 0.601i)16-s + (4.87 + 4.08i)17-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.287i)2-s + (−1.04 + 0.379i)3-s + (−0.138 − 0.787i)4-s + (0.0776 − 0.440i)5-s + (0.465 + 0.169i)6-s + (−0.772 − 1.33i)7-s + (−0.402 + 0.697i)8-s + (0.174 − 0.146i)9-s + (−0.153 + 0.128i)10-s + (0.655 − 1.13i)11-s + (0.443 + 0.767i)12-s + (−0.404 − 0.147i)13-s + (−0.120 + 0.681i)14-s + (0.0860 + 0.488i)15-s + (−0.412 + 0.150i)16-s + (1.18 + 0.991i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.496 + 0.867i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.496 + 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.241403 - 0.416307i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.241403 - 0.416307i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.173 + 0.984i)T \) |
| 19 | \( 1 + (-0.708 - 4.30i)T \) |
good | 2 | \( 1 + (0.484 + 0.406i)T + (0.347 + 1.96i)T^{2} \) |
| 3 | \( 1 + (1.80 - 0.656i)T + (2.29 - 1.92i)T^{2} \) |
| 7 | \( 1 + (2.04 + 3.54i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.17 + 3.76i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.45 + 0.530i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-4.87 - 4.08i)T + (2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (0.583 + 3.31i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (-3.99 + 3.35i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (3.28 + 5.68i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.180T + 37T^{2} \) |
| 41 | \( 1 + (0.0242 - 0.00881i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (-0.793 + 4.50i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (1.09 - 0.919i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (0.278 + 1.57i)T + (-49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-7.31 - 6.13i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (1.05 + 5.99i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (-7.87 + 6.60i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (1.88 - 10.7i)T + (-66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + (-12.7 + 4.65i)T + (55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (16.2 - 5.90i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-2.57 - 4.46i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.477 - 0.173i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (-2.51 - 2.10i)T + (16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.72986325017835878840730690450, −12.36578615795970499324115514702, −11.23041714154790723298094942724, −10.33868555714508002584855250323, −9.795549132417880960142245049089, −8.228371739686140341258604136133, −6.34398234327662814713344059147, −5.55135317589676692776915918797, −3.96869492712991728507848203525, −0.74573245551495280457099845822,
3.01642687849450408067427699281, 5.20751095781043555153913113053, 6.57261574899617416363508975052, 7.26886099829141508134747033187, 9.002189238852360506925575140452, 9.768145554685064255160897422110, 11.61979456790037001369786930601, 12.14259154853835384423536061838, 12.82908819145219546753340419823, 14.45982886296772958340197897680