Properties

Label 2-9464-1.1-c1-0-87
Degree $2$
Conductor $9464$
Sign $1$
Analytic cond. $75.5704$
Root an. cond. $8.69312$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.45·3-s + 1.40·5-s + 7-s − 0.895·9-s − 4.40·11-s + 2.03·15-s + 0.145·17-s + 1.99·19-s + 1.45·21-s + 6.06·23-s − 3.03·25-s − 5.65·27-s − 4.38·29-s + 3.62·31-s − 6.39·33-s + 1.40·35-s + 2.93·37-s + 0.729·41-s + 11.7·43-s − 1.25·45-s + 3.07·47-s + 49-s + 0.210·51-s + 4.22·53-s − 6.18·55-s + 2.89·57-s + 12.7·59-s + ⋯
L(s)  = 1  + 0.837·3-s + 0.627·5-s + 0.377·7-s − 0.298·9-s − 1.32·11-s + 0.525·15-s + 0.0351·17-s + 0.457·19-s + 0.316·21-s + 1.26·23-s − 0.606·25-s − 1.08·27-s − 0.814·29-s + 0.650·31-s − 1.11·33-s + 0.237·35-s + 0.483·37-s + 0.113·41-s + 1.79·43-s − 0.187·45-s + 0.448·47-s + 0.142·49-s + 0.0294·51-s + 0.580·53-s − 0.833·55-s + 0.383·57-s + 1.65·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9464\)    =    \(2^{3} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(75.5704\)
Root analytic conductor: \(8.69312\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9464,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.970887594\)
\(L(\frac12)\) \(\approx\) \(2.970887594\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 1.45T + 3T^{2} \)
5 \( 1 - 1.40T + 5T^{2} \)
11 \( 1 + 4.40T + 11T^{2} \)
17 \( 1 - 0.145T + 17T^{2} \)
19 \( 1 - 1.99T + 19T^{2} \)
23 \( 1 - 6.06T + 23T^{2} \)
29 \( 1 + 4.38T + 29T^{2} \)
31 \( 1 - 3.62T + 31T^{2} \)
37 \( 1 - 2.93T + 37T^{2} \)
41 \( 1 - 0.729T + 41T^{2} \)
43 \( 1 - 11.7T + 43T^{2} \)
47 \( 1 - 3.07T + 47T^{2} \)
53 \( 1 - 4.22T + 53T^{2} \)
59 \( 1 - 12.7T + 59T^{2} \)
61 \( 1 + 2.86T + 61T^{2} \)
67 \( 1 + 10.7T + 67T^{2} \)
71 \( 1 + 11.4T + 71T^{2} \)
73 \( 1 - 11.3T + 73T^{2} \)
79 \( 1 - 8.81T + 79T^{2} \)
83 \( 1 - 10.8T + 83T^{2} \)
89 \( 1 - 13.9T + 89T^{2} \)
97 \( 1 - 6.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67932565553885172737233911263, −7.34798676090410695377103804640, −6.21701584669312781918968084500, −5.56229324504932791428703589266, −5.09195854875254574437160307120, −4.13923282897093292165640406362, −3.22325777467382068542382810176, −2.55554748581762357858421784661, −2.03714393148241188051042324420, −0.77299914601925933221362458295, 0.77299914601925933221362458295, 2.03714393148241188051042324420, 2.55554748581762357858421784661, 3.22325777467382068542382810176, 4.13923282897093292165640406362, 5.09195854875254574437160307120, 5.56229324504932791428703589266, 6.21701584669312781918968084500, 7.34798676090410695377103804640, 7.67932565553885172737233911263

Graph of the $Z$-function along the critical line