Properties

Label 2-9464-1.1-c1-0-112
Degree $2$
Conductor $9464$
Sign $-1$
Analytic cond. $75.5704$
Root an. cond. $8.69312$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.739·3-s − 1.43·5-s − 7-s − 2.45·9-s − 4.73·11-s + 1.06·15-s + 2.85·17-s + 0.0123·19-s + 0.739·21-s + 8.75·23-s − 2.93·25-s + 4.03·27-s − 6.55·29-s + 6.65·31-s + 3.49·33-s + 1.43·35-s + 2.21·37-s − 1.13·41-s + 8.89·43-s + 3.52·45-s − 13.0·47-s + 49-s − 2.10·51-s + 6.20·53-s + 6.80·55-s − 0.00909·57-s + 8.21·59-s + ⋯
L(s)  = 1  − 0.426·3-s − 0.642·5-s − 0.377·7-s − 0.817·9-s − 1.42·11-s + 0.274·15-s + 0.692·17-s + 0.00282·19-s + 0.161·21-s + 1.82·23-s − 0.586·25-s + 0.775·27-s − 1.21·29-s + 1.19·31-s + 0.608·33-s + 0.243·35-s + 0.363·37-s − 0.177·41-s + 1.35·43-s + 0.525·45-s − 1.89·47-s + 0.142·49-s − 0.295·51-s + 0.852·53-s + 0.917·55-s − 0.00120·57-s + 1.06·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9464\)    =    \(2^{3} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(75.5704\)
Root analytic conductor: \(8.69312\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + 0.739T + 3T^{2} \)
5 \( 1 + 1.43T + 5T^{2} \)
11 \( 1 + 4.73T + 11T^{2} \)
17 \( 1 - 2.85T + 17T^{2} \)
19 \( 1 - 0.0123T + 19T^{2} \)
23 \( 1 - 8.75T + 23T^{2} \)
29 \( 1 + 6.55T + 29T^{2} \)
31 \( 1 - 6.65T + 31T^{2} \)
37 \( 1 - 2.21T + 37T^{2} \)
41 \( 1 + 1.13T + 41T^{2} \)
43 \( 1 - 8.89T + 43T^{2} \)
47 \( 1 + 13.0T + 47T^{2} \)
53 \( 1 - 6.20T + 53T^{2} \)
59 \( 1 - 8.21T + 59T^{2} \)
61 \( 1 - 8.05T + 61T^{2} \)
67 \( 1 + 9.19T + 67T^{2} \)
71 \( 1 - 0.560T + 71T^{2} \)
73 \( 1 - 11.2T + 73T^{2} \)
79 \( 1 + 9.20T + 79T^{2} \)
83 \( 1 - 10.9T + 83T^{2} \)
89 \( 1 + 0.0602T + 89T^{2} \)
97 \( 1 + 16.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40796022989503555893215796111, −6.71795505025650699184653822656, −5.84020442008915814252367611118, −5.34628764229688394787549839913, −4.75122183541852275192253017026, −3.72613679224185432812908171200, −3.02185688655325671592827819397, −2.40848820377514508953819720062, −0.914868349433712374937377483106, 0, 0.914868349433712374937377483106, 2.40848820377514508953819720062, 3.02185688655325671592827819397, 3.72613679224185432812908171200, 4.75122183541852275192253017026, 5.34628764229688394787549839913, 5.84020442008915814252367611118, 6.71795505025650699184653822656, 7.40796022989503555893215796111

Graph of the $Z$-function along the critical line