Properties

Label 2-97e2-1.1-c1-0-414
Degree $2$
Conductor $9409$
Sign $-1$
Analytic cond. $75.1312$
Root an. cond. $8.66782$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·2-s − 3.39·3-s + 1.01·4-s + 2.86·5-s + 5.89·6-s + 0.942·7-s + 1.71·8-s + 8.53·9-s − 4.96·10-s − 3.33·11-s − 3.43·12-s + 1.74·13-s − 1.63·14-s − 9.71·15-s − 4.99·16-s − 3.59·17-s − 14.8·18-s − 1.93·19-s + 2.89·20-s − 3.20·21-s + 5.78·22-s + 2.66·23-s − 5.82·24-s + 3.18·25-s − 3.03·26-s − 18.8·27-s + 0.953·28-s + ⋯
L(s)  = 1  − 1.22·2-s − 1.96·3-s + 0.505·4-s + 1.27·5-s + 2.40·6-s + 0.356·7-s + 0.606·8-s + 2.84·9-s − 1.56·10-s − 1.00·11-s − 0.992·12-s + 0.484·13-s − 0.437·14-s − 2.50·15-s − 1.24·16-s − 0.871·17-s − 3.49·18-s − 0.445·19-s + 0.647·20-s − 0.698·21-s + 1.23·22-s + 0.554·23-s − 1.18·24-s + 0.636·25-s − 0.594·26-s − 3.61·27-s + 0.180·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9409 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9409\)    =    \(97^{2}\)
Sign: $-1$
Analytic conductor: \(75.1312\)
Root analytic conductor: \(8.66782\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9409,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad97 \( 1 \)
good2 \( 1 + 1.73T + 2T^{2} \)
3 \( 1 + 3.39T + 3T^{2} \)
5 \( 1 - 2.86T + 5T^{2} \)
7 \( 1 - 0.942T + 7T^{2} \)
11 \( 1 + 3.33T + 11T^{2} \)
13 \( 1 - 1.74T + 13T^{2} \)
17 \( 1 + 3.59T + 17T^{2} \)
19 \( 1 + 1.93T + 19T^{2} \)
23 \( 1 - 2.66T + 23T^{2} \)
29 \( 1 - 7.36T + 29T^{2} \)
31 \( 1 - 3.74T + 31T^{2} \)
37 \( 1 + 0.721T + 37T^{2} \)
41 \( 1 + 5.04T + 41T^{2} \)
43 \( 1 - 6.72T + 43T^{2} \)
47 \( 1 - 7.87T + 47T^{2} \)
53 \( 1 - 2.72T + 53T^{2} \)
59 \( 1 + 7.83T + 59T^{2} \)
61 \( 1 - 5.40T + 61T^{2} \)
67 \( 1 + 8.28T + 67T^{2} \)
71 \( 1 + 12.6T + 71T^{2} \)
73 \( 1 + 3.27T + 73T^{2} \)
79 \( 1 - 0.714T + 79T^{2} \)
83 \( 1 + 4.45T + 83T^{2} \)
89 \( 1 - 15.6T + 89T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.24839747543922078260918155259, −6.62090094029964204461301860703, −6.10370979508301383204567840032, −5.42824025896839038173721910186, −4.78256321945592672524366798933, −4.30589131599622286722947316411, −2.53935065682440611888056256389, −1.66004350889861485453704256108, −0.998838410408404415922822441874, 0, 0.998838410408404415922822441874, 1.66004350889861485453704256108, 2.53935065682440611888056256389, 4.30589131599622286722947316411, 4.78256321945592672524366798933, 5.42824025896839038173721910186, 6.10370979508301383204567840032, 6.62090094029964204461301860703, 7.24839747543922078260918155259

Graph of the $Z$-function along the critical line