Properties

Label 2-9386-1.1-c1-0-317
Degree $2$
Conductor $9386$
Sign $-1$
Analytic cond. $74.9475$
Root an. cond. $8.65722$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.68·3-s + 4-s + 0.637·5-s − 2.68·6-s − 2.14·7-s − 8-s + 4.20·9-s − 0.637·10-s + 4.14·11-s + 2.68·12-s + 13-s + 2.14·14-s + 1.71·15-s + 16-s − 4.09·17-s − 4.20·18-s + 0.637·20-s − 5.75·21-s − 4.14·22-s − 5.41·23-s − 2.68·24-s − 4.59·25-s − 26-s + 3.23·27-s − 2.14·28-s − 0.983·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.54·3-s + 0.5·4-s + 0.285·5-s − 1.09·6-s − 0.811·7-s − 0.353·8-s + 1.40·9-s − 0.201·10-s + 1.24·11-s + 0.774·12-s + 0.277·13-s + 0.573·14-s + 0.442·15-s + 0.250·16-s − 0.992·17-s − 0.990·18-s + 0.142·20-s − 1.25·21-s − 0.882·22-s − 1.12·23-s − 0.547·24-s − 0.918·25-s − 0.196·26-s + 0.621·27-s − 0.405·28-s − 0.182·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9386\)    =    \(2 \cdot 13 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(74.9475\)
Root analytic conductor: \(8.65722\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9386,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
13 \( 1 - T \)
19 \( 1 \)
good3 \( 1 - 2.68T + 3T^{2} \)
5 \( 1 - 0.637T + 5T^{2} \)
7 \( 1 + 2.14T + 7T^{2} \)
11 \( 1 - 4.14T + 11T^{2} \)
17 \( 1 + 4.09T + 17T^{2} \)
23 \( 1 + 5.41T + 23T^{2} \)
29 \( 1 + 0.983T + 29T^{2} \)
31 \( 1 + 6.46T + 31T^{2} \)
37 \( 1 + 1.72T + 37T^{2} \)
41 \( 1 + 9.07T + 41T^{2} \)
43 \( 1 - 0.899T + 43T^{2} \)
47 \( 1 + 5.20T + 47T^{2} \)
53 \( 1 - 5.58T + 53T^{2} \)
59 \( 1 + 4.94T + 59T^{2} \)
61 \( 1 - 5.38T + 61T^{2} \)
67 \( 1 + 2.12T + 67T^{2} \)
71 \( 1 - 8.02T + 71T^{2} \)
73 \( 1 - 10.9T + 73T^{2} \)
79 \( 1 + 12.3T + 79T^{2} \)
83 \( 1 + 13.1T + 83T^{2} \)
89 \( 1 - 13.4T + 89T^{2} \)
97 \( 1 + 17.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52941266915103360247431895777, −6.73226496590409754750014279830, −6.40550282183643638475056345937, −5.44720334133142743304884451576, −4.06526639771770645152622560287, −3.75302372381614266726677384080, −2.95298441905368305959810260426, −2.03732925310576392885868651813, −1.58902659676538266994323546686, 0, 1.58902659676538266994323546686, 2.03732925310576392885868651813, 2.95298441905368305959810260426, 3.75302372381614266726677384080, 4.06526639771770645152622560287, 5.44720334133142743304884451576, 6.40550282183643638475056345937, 6.73226496590409754750014279830, 7.52941266915103360247431895777

Graph of the $Z$-function along the critical line