Properties

Label 2-9386-1.1-c1-0-312
Degree $2$
Conductor $9386$
Sign $-1$
Analytic cond. $74.9475$
Root an. cond. $8.65722$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.39·3-s + 4-s + 4.06·5-s − 2.39·6-s − 3.19·7-s − 8-s + 2.75·9-s − 4.06·10-s − 5.11·11-s + 2.39·12-s + 13-s + 3.19·14-s + 9.74·15-s + 16-s − 5.04·17-s − 2.75·18-s + 4.06·20-s − 7.67·21-s + 5.11·22-s − 0.882·23-s − 2.39·24-s + 11.4·25-s − 26-s − 0.592·27-s − 3.19·28-s − 5.65·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.38·3-s + 0.5·4-s + 1.81·5-s − 0.979·6-s − 1.20·7-s − 0.353·8-s + 0.917·9-s − 1.28·10-s − 1.54·11-s + 0.692·12-s + 0.277·13-s + 0.855·14-s + 2.51·15-s + 0.250·16-s − 1.22·17-s − 0.648·18-s + 0.908·20-s − 1.67·21-s + 1.08·22-s − 0.183·23-s − 0.489·24-s + 2.29·25-s − 0.196·26-s − 0.114·27-s − 0.604·28-s − 1.04·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9386\)    =    \(2 \cdot 13 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(74.9475\)
Root analytic conductor: \(8.65722\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9386,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
13 \( 1 - T \)
19 \( 1 \)
good3 \( 1 - 2.39T + 3T^{2} \)
5 \( 1 - 4.06T + 5T^{2} \)
7 \( 1 + 3.19T + 7T^{2} \)
11 \( 1 + 5.11T + 11T^{2} \)
17 \( 1 + 5.04T + 17T^{2} \)
23 \( 1 + 0.882T + 23T^{2} \)
29 \( 1 + 5.65T + 29T^{2} \)
31 \( 1 - 9.37T + 31T^{2} \)
37 \( 1 + 6.38T + 37T^{2} \)
41 \( 1 - 3.66T + 41T^{2} \)
43 \( 1 + 5.42T + 43T^{2} \)
47 \( 1 - 0.205T + 47T^{2} \)
53 \( 1 - 1.33T + 53T^{2} \)
59 \( 1 - 5.49T + 59T^{2} \)
61 \( 1 + 0.172T + 61T^{2} \)
67 \( 1 + 14.6T + 67T^{2} \)
71 \( 1 + 12.5T + 71T^{2} \)
73 \( 1 - 2.40T + 73T^{2} \)
79 \( 1 + 15.4T + 79T^{2} \)
83 \( 1 + 6.06T + 83T^{2} \)
89 \( 1 - 3.41T + 89T^{2} \)
97 \( 1 - 3.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41132793490147649036897755751, −6.79826944231036777125768562265, −6.08835084228027606351291070138, −5.58176068571426343394555508974, −4.56014700951268727878879480232, −3.33414967641568260431997518707, −2.72199031993888373917091770082, −2.33732461332811544237824038536, −1.55939006147672843664745150325, 0, 1.55939006147672843664745150325, 2.33732461332811544237824038536, 2.72199031993888373917091770082, 3.33414967641568260431997518707, 4.56014700951268727878879480232, 5.58176068571426343394555508974, 6.08835084228027606351291070138, 6.79826944231036777125768562265, 7.41132793490147649036897755751

Graph of the $Z$-function along the critical line