Properties

Label 2-9386-1.1-c1-0-165
Degree $2$
Conductor $9386$
Sign $1$
Analytic cond. $74.9475$
Root an. cond. $8.65722$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.42·3-s + 4-s + 4.30·5-s − 2.42·6-s + 2.46·7-s + 8-s + 2.87·9-s + 4.30·10-s − 0.0348·11-s − 2.42·12-s + 13-s + 2.46·14-s − 10.4·15-s + 16-s − 0.619·17-s + 2.87·18-s + 4.30·20-s − 5.98·21-s − 0.0348·22-s − 2.96·23-s − 2.42·24-s + 13.5·25-s + 26-s + 0.299·27-s + 2.46·28-s + 2.42·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.39·3-s + 0.5·4-s + 1.92·5-s − 0.989·6-s + 0.933·7-s + 0.353·8-s + 0.958·9-s + 1.36·10-s − 0.0105·11-s − 0.699·12-s + 0.277·13-s + 0.660·14-s − 2.69·15-s + 0.250·16-s − 0.150·17-s + 0.677·18-s + 0.963·20-s − 1.30·21-s − 0.00742·22-s − 0.618·23-s − 0.494·24-s + 2.71·25-s + 0.196·26-s + 0.0577·27-s + 0.466·28-s + 0.450·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9386\)    =    \(2 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(74.9475\)
Root analytic conductor: \(8.65722\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9386,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.656857439\)
\(L(\frac12)\) \(\approx\) \(3.656857439\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
13 \( 1 - T \)
19 \( 1 \)
good3 \( 1 + 2.42T + 3T^{2} \)
5 \( 1 - 4.30T + 5T^{2} \)
7 \( 1 - 2.46T + 7T^{2} \)
11 \( 1 + 0.0348T + 11T^{2} \)
17 \( 1 + 0.619T + 17T^{2} \)
23 \( 1 + 2.96T + 23T^{2} \)
29 \( 1 - 2.42T + 29T^{2} \)
31 \( 1 + 1.05T + 31T^{2} \)
37 \( 1 + 10.4T + 37T^{2} \)
41 \( 1 - 3.53T + 41T^{2} \)
43 \( 1 + 1.52T + 43T^{2} \)
47 \( 1 - 4.12T + 47T^{2} \)
53 \( 1 + 8.34T + 53T^{2} \)
59 \( 1 - 13.5T + 59T^{2} \)
61 \( 1 - 11.9T + 61T^{2} \)
67 \( 1 + 10.6T + 67T^{2} \)
71 \( 1 - 10.1T + 71T^{2} \)
73 \( 1 - 6.45T + 73T^{2} \)
79 \( 1 + 12.7T + 79T^{2} \)
83 \( 1 - 10.9T + 83T^{2} \)
89 \( 1 - 13.9T + 89T^{2} \)
97 \( 1 - 16.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.34646012573885188404364435533, −6.60036271282703006369544009763, −6.17277900997418032849639193274, −5.60929775609652708320846894824, −5.05945800585691313956996149535, −4.71855908207520993349731908873, −3.55738404278243695650784547183, −2.35411324114176313709395399363, −1.78591976889950933767121154993, −0.931777385522273918669548453077, 0.931777385522273918669548453077, 1.78591976889950933767121154993, 2.35411324114176313709395399363, 3.55738404278243695650784547183, 4.71855908207520993349731908873, 5.05945800585691313956996149535, 5.60929775609652708320846894824, 6.17277900997418032849639193274, 6.60036271282703006369544009763, 7.34646012573885188404364435533

Graph of the $Z$-function along the critical line