| L(s) = 1 | + (−0.377 + 1.69i)3-s + (2.15 − 3.73i)5-s + (−0.803 − 1.39i)7-s + (−2.71 − 1.27i)9-s + (1.64 + 2.85i)11-s + (−0.5 + 0.866i)13-s + (5.49 + 5.05i)15-s + 1.73·17-s + 0.746·19-s + (2.65 − 0.832i)21-s + (1.46 − 2.53i)23-s + (−6.78 − 11.7i)25-s + (3.18 − 4.10i)27-s + (−3.78 − 6.55i)29-s + (3.86 − 6.68i)31-s + ⋯ |
| L(s) = 1 | + (−0.218 + 0.975i)3-s + (0.963 − 1.66i)5-s + (−0.303 − 0.526i)7-s + (−0.904 − 0.425i)9-s + (0.497 + 0.861i)11-s + (−0.138 + 0.240i)13-s + (1.41 + 1.30i)15-s + 0.421·17-s + 0.171·19-s + (0.579 − 0.181i)21-s + (0.304 − 0.528i)23-s + (−1.35 − 2.35i)25-s + (0.613 − 0.789i)27-s + (−0.703 − 1.21i)29-s + (0.693 − 1.20i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.704 + 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.704 + 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.46007 - 0.607921i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.46007 - 0.607921i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.377 - 1.69i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| good | 5 | \( 1 + (-2.15 + 3.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.803 + 1.39i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.64 - 2.85i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 1.73T + 17T^{2} \) |
| 19 | \( 1 - 0.746T + 19T^{2} \) |
| 23 | \( 1 + (-1.46 + 2.53i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.78 + 6.55i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.86 + 6.68i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2.38T + 37T^{2} \) |
| 41 | \( 1 + (-3.90 + 6.75i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.51 + 4.34i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.69 - 11.5i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 3.49T + 53T^{2} \) |
| 59 | \( 1 + (2.47 - 4.29i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.48 - 7.76i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.83 + 4.90i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.2T + 71T^{2} \) |
| 73 | \( 1 + 5.51T + 73T^{2} \) |
| 79 | \( 1 + (0.231 + 0.401i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.27 + 5.68i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 7.69T + 89T^{2} \) |
| 97 | \( 1 + (0.310 + 0.538i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.803190658506611508188906369305, −9.315232791519436300732095565899, −8.655398287177604748790797299712, −7.50929873434450099128727350965, −6.15012333819954442945826130581, −5.54406670472481641278822772865, −4.48087789917561621135816896643, −4.11760600802421073081944456599, −2.31371383791637254011388624791, −0.810075118324892615525740047403,
1.51757268575472643208112800706, 2.77021369597831143412165117098, 3.28557424823698067346393539186, 5.45650859239679895629994559341, 5.95582121431060811598583138833, 6.76388859171759742243470895196, 7.29942347219265410046605907143, 8.447345039304676374778369763938, 9.385441591168809253648753948844, 10.26583465433657818035318540553