L(s) = 1 | + (1.32 − 0.492i)2-s + (1.51 − 1.30i)4-s + 0.678·5-s − 4.56i·7-s + (1.36 − 2.47i)8-s + (0.899 − 0.333i)10-s + 6.10i·11-s − i·13-s + (−2.24 − 6.04i)14-s + (0.593 − 3.95i)16-s − 6.72i·17-s − 1.27·19-s + (1.02 − 0.884i)20-s + (3.00 + 8.09i)22-s + 5.10·23-s + ⋯ |
L(s) = 1 | + (0.937 − 0.348i)2-s + (0.757 − 0.652i)4-s + 0.303·5-s − 1.72i·7-s + (0.483 − 0.875i)8-s + (0.284 − 0.105i)10-s + 1.84i·11-s − 0.277i·13-s + (−0.599 − 1.61i)14-s + (0.148 − 0.988i)16-s − 1.63i·17-s − 0.292·19-s + (0.229 − 0.197i)20-s + (0.640 + 1.72i)22-s + 1.06·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.110 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.110 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.18761 - 1.95732i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.18761 - 1.95732i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.32 + 0.492i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 - 0.678T + 5T^{2} \) |
| 7 | \( 1 + 4.56iT - 7T^{2} \) |
| 11 | \( 1 - 6.10iT - 11T^{2} \) |
| 17 | \( 1 + 6.72iT - 17T^{2} \) |
| 19 | \( 1 + 1.27T + 19T^{2} \) |
| 23 | \( 1 - 5.10T + 23T^{2} \) |
| 29 | \( 1 - 1.72T + 29T^{2} \) |
| 31 | \( 1 - 2.37iT - 31T^{2} \) |
| 37 | \( 1 - 6.99iT - 37T^{2} \) |
| 41 | \( 1 - 2.28iT - 41T^{2} \) |
| 43 | \( 1 - 2.68T + 43T^{2} \) |
| 47 | \( 1 - 5.32T + 47T^{2} \) |
| 53 | \( 1 + 6.35T + 53T^{2} \) |
| 59 | \( 1 + 4.46iT - 59T^{2} \) |
| 61 | \( 1 + 6.35iT - 61T^{2} \) |
| 67 | \( 1 - 10.0T + 67T^{2} \) |
| 71 | \( 1 - 11.6T + 71T^{2} \) |
| 73 | \( 1 + 5.82T + 73T^{2} \) |
| 79 | \( 1 - 12.6iT - 79T^{2} \) |
| 83 | \( 1 - 9.84iT - 83T^{2} \) |
| 89 | \( 1 - 15.8iT - 89T^{2} \) |
| 97 | \( 1 - 6.95T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.857081642418350389970201013695, −9.635962726265894727885228979350, −7.78060428262938178039588183412, −7.07833416157161449472865608645, −6.61841282595976718130022909853, −5.05589409446255914955709144944, −4.62435535672288736337036689622, −3.62178426169677356390177715043, −2.40198121016383759669159948417, −1.08450339992817448367512475856,
1.98641252123063422129083094984, 2.97196423693872150133268103446, 3.94736977748370873528302816479, 5.30900734121540983065796235795, 5.95267185802674554249701990280, 6.29417668131908940838102394884, 7.76039409328199735831197956974, 8.645422951800763457726032422236, 9.006624087486906354226348350423, 10.53798298527122727989452576214