L(s) = 1 | + (1.18 − 0.768i)2-s + (0.817 − 1.82i)4-s + 0.327·5-s − 2.84i·7-s + (−0.432 − 2.79i)8-s + (0.388 − 0.251i)10-s − 1.48i·11-s + i·13-s + (−2.18 − 3.37i)14-s + (−2.66 − 2.98i)16-s + 0.756i·17-s + 4.98·19-s + (0.267 − 0.597i)20-s + (−1.14 − 1.76i)22-s − 2.71·23-s + ⋯ |
L(s) = 1 | + (0.839 − 0.543i)2-s + (0.408 − 0.912i)4-s + 0.146·5-s − 1.07i·7-s + (−0.152 − 0.988i)8-s + (0.122 − 0.0795i)10-s − 0.448i·11-s + 0.277i·13-s + (−0.584 − 0.902i)14-s + (−0.665 − 0.746i)16-s + 0.183i·17-s + 1.14·19-s + (0.0598 − 0.133i)20-s + (−0.243 − 0.376i)22-s − 0.566·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.445 + 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.445 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30636 - 2.10975i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30636 - 2.10975i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.18 + 0.768i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 - 0.327T + 5T^{2} \) |
| 7 | \( 1 + 2.84iT - 7T^{2} \) |
| 11 | \( 1 + 1.48iT - 11T^{2} \) |
| 17 | \( 1 - 0.756iT - 17T^{2} \) |
| 19 | \( 1 - 4.98T + 19T^{2} \) |
| 23 | \( 1 + 2.71T + 23T^{2} \) |
| 29 | \( 1 + 2.16T + 29T^{2} \) |
| 31 | \( 1 + 3.62iT - 31T^{2} \) |
| 37 | \( 1 + 10.0iT - 37T^{2} \) |
| 41 | \( 1 - 11.3iT - 41T^{2} \) |
| 43 | \( 1 - 2.76T + 43T^{2} \) |
| 47 | \( 1 - 9.45T + 47T^{2} \) |
| 53 | \( 1 - 3.68T + 53T^{2} \) |
| 59 | \( 1 - 2.06iT - 59T^{2} \) |
| 61 | \( 1 + 8.28iT - 61T^{2} \) |
| 67 | \( 1 - 12.1T + 67T^{2} \) |
| 71 | \( 1 + 1.67T + 71T^{2} \) |
| 73 | \( 1 - 4.79T + 73T^{2} \) |
| 79 | \( 1 + 1.01iT - 79T^{2} \) |
| 83 | \( 1 - 12.2iT - 83T^{2} \) |
| 89 | \( 1 - 3.19iT - 89T^{2} \) |
| 97 | \( 1 + 5.62T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.891032468254433499908681697805, −9.353703776142647123262275067399, −7.900824304627246998674320135577, −7.14858979635076873508397299783, −6.12872819911073130447096238176, −5.37337422147869390105776073576, −4.17571629330870613920050136569, −3.60981390261697817417635917927, −2.27041003010558306187967881830, −0.904476687823615765022072571351,
2.06392098782560839159957957650, 3.07328321445797813217491973963, 4.18634875056663265017229478840, 5.37812264990684549953961908908, 5.72216315654718349684663485640, 6.86256235216890889237250970294, 7.65165140773834318445543795593, 8.534484530354019293520788664701, 9.348375969274412540941495925969, 10.32186904208729637762256659461