L(s) = 1 | + (0.634 − 1.26i)2-s + (−1.19 − 1.60i)4-s − 0.743·5-s + 1.72i·7-s + (−2.78 + 0.494i)8-s + (−0.471 + 0.939i)10-s + 4.66i·11-s − i·13-s + (2.17 + 1.09i)14-s + (−1.14 + 3.83i)16-s + 6.58i·17-s − 3.02·19-s + (0.888 + 1.19i)20-s + (5.90 + 2.96i)22-s − 7.02·23-s + ⋯ |
L(s) = 1 | + (0.448 − 0.893i)2-s + (−0.597 − 0.801i)4-s − 0.332·5-s + 0.650i·7-s + (−0.984 + 0.174i)8-s + (−0.149 + 0.297i)10-s + 1.40i·11-s − 0.277i·13-s + (0.581 + 0.291i)14-s + (−0.285 + 0.958i)16-s + 1.59i·17-s − 0.694·19-s + (0.198 + 0.266i)20-s + (1.25 + 0.631i)22-s − 1.46·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.702 - 0.711i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.702 - 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.994991 + 0.415561i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.994991 + 0.415561i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.634 + 1.26i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + 0.743T + 5T^{2} \) |
| 7 | \( 1 - 1.72iT - 7T^{2} \) |
| 11 | \( 1 - 4.66iT - 11T^{2} \) |
| 17 | \( 1 - 6.58iT - 17T^{2} \) |
| 19 | \( 1 + 3.02T + 19T^{2} \) |
| 23 | \( 1 + 7.02T + 23T^{2} \) |
| 29 | \( 1 - 10.3T + 29T^{2} \) |
| 31 | \( 1 + 0.619iT - 31T^{2} \) |
| 37 | \( 1 + 0.689iT - 37T^{2} \) |
| 41 | \( 1 - 5.53iT - 41T^{2} \) |
| 43 | \( 1 - 8.98T + 43T^{2} \) |
| 47 | \( 1 - 0.183T + 47T^{2} \) |
| 53 | \( 1 + 10.7T + 53T^{2} \) |
| 59 | \( 1 - 13.2iT - 59T^{2} \) |
| 61 | \( 1 + 13.1iT - 61T^{2} \) |
| 67 | \( 1 - 0.268T + 67T^{2} \) |
| 71 | \( 1 + 10.4T + 71T^{2} \) |
| 73 | \( 1 - 2.74T + 73T^{2} \) |
| 79 | \( 1 - 11.0iT - 79T^{2} \) |
| 83 | \( 1 - 6.15iT - 83T^{2} \) |
| 89 | \( 1 + 13.1iT - 89T^{2} \) |
| 97 | \( 1 + 17.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21235085352156640259396130510, −9.640002443368506416118959972104, −8.555773946210586209074366919087, −7.88249912192005262735785516493, −6.43796960745317094418863470562, −5.77470074694822477926116667305, −4.52952824116532085170170017389, −3.99604082453962127420146577136, −2.60290115959495994678813236286, −1.70018884539146354692855439991,
0.43106896683224352642958828929, 2.79778377227671459187680903248, 3.86148639588902986067796074320, 4.61153468978210408330739827200, 5.75171741419170744900063496420, 6.48309831118968869160790090600, 7.40115848753425770966757742231, 8.125242195641575689167635425000, 8.848857191839653073622878810609, 9.811436307211602263225496091361