L(s) = 1 | + (0.508 + 1.31i)2-s + (−1.48 + 1.34i)4-s + 2.44·5-s − 2.55i·7-s + (−2.52 − 1.27i)8-s + (1.24 + 3.22i)10-s − 5.76i·11-s − i·13-s + (3.36 − 1.29i)14-s + (0.397 − 3.98i)16-s − 1.56i·17-s + 5.82·19-s + (−3.62 + 3.28i)20-s + (7.61 − 2.93i)22-s + 2.69·23-s + ⋯ |
L(s) = 1 | + (0.359 + 0.933i)2-s + (−0.741 + 0.671i)4-s + 1.09·5-s − 0.964i·7-s + (−0.892 − 0.450i)8-s + (0.393 + 1.02i)10-s − 1.73i·11-s − 0.277i·13-s + (0.900 − 0.346i)14-s + (0.0993 − 0.995i)16-s − 0.379i·17-s + 1.33·19-s + (−0.810 + 0.733i)20-s + (1.62 − 0.625i)22-s + 0.561·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.147i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 - 0.147i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.99932 + 0.148328i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.99932 + 0.148328i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.508 - 1.31i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 - 2.44T + 5T^{2} \) |
| 7 | \( 1 + 2.55iT - 7T^{2} \) |
| 11 | \( 1 + 5.76iT - 11T^{2} \) |
| 17 | \( 1 + 1.56iT - 17T^{2} \) |
| 19 | \( 1 - 5.82T + 19T^{2} \) |
| 23 | \( 1 - 2.69T + 23T^{2} \) |
| 29 | \( 1 + 6.76T + 29T^{2} \) |
| 31 | \( 1 + 5.29iT - 31T^{2} \) |
| 37 | \( 1 - 1.74iT - 37T^{2} \) |
| 41 | \( 1 - 7.99iT - 41T^{2} \) |
| 43 | \( 1 - 2.92T + 43T^{2} \) |
| 47 | \( 1 + 3.40T + 47T^{2} \) |
| 53 | \( 1 + 11.0T + 53T^{2} \) |
| 59 | \( 1 - 9.66iT - 59T^{2} \) |
| 61 | \( 1 + 0.282iT - 61T^{2} \) |
| 67 | \( 1 - 12.4T + 67T^{2} \) |
| 71 | \( 1 - 1.05T + 71T^{2} \) |
| 73 | \( 1 - 10.4T + 73T^{2} \) |
| 79 | \( 1 - 7.55iT - 79T^{2} \) |
| 83 | \( 1 - 14.2iT - 83T^{2} \) |
| 89 | \( 1 + 7.27iT - 89T^{2} \) |
| 97 | \( 1 - 4.07T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.736694639884768541434927768361, −9.319120586299770608180515902985, −8.195605635850676970626377528204, −7.50864012744002254363139651358, −6.51840752698994616902397071815, −5.76677143553211112114101867239, −5.14010252240726624835677322697, −3.81621412935217306399524315756, −2.94587734654847326323669884278, −0.892765529944684921246317537706,
1.69923307585062416443393516666, 2.27168815766449404895889842885, 3.52968260281078921018977000924, 4.89519196958644049329796228062, 5.39649086677332087053402323021, 6.34916572177682974354358341458, 7.47187829353705723093557779059, 8.857951455089864333230876248954, 9.506231074202230684653577750266, 9.864982995247299246264351330500