L(s) = 1 | + (0.339 − 1.37i)2-s + (−1.76 − 0.932i)4-s − 3.97·5-s + 0.281i·7-s + (−1.88 + 2.11i)8-s + (−1.35 + 5.45i)10-s − 4.15i·11-s + i·13-s + (0.386 + 0.0956i)14-s + (2.25 + 3.30i)16-s + 5.36i·17-s + 1.44·19-s + (7.03 + 3.70i)20-s + (−5.70 − 1.41i)22-s − 0.283·23-s + ⋯ |
L(s) = 1 | + (0.240 − 0.970i)2-s + (−0.884 − 0.466i)4-s − 1.77·5-s + 0.106i·7-s + (−0.665 + 0.746i)8-s + (−0.426 + 1.72i)10-s − 1.25i·11-s + 0.277i·13-s + (0.103 + 0.0255i)14-s + (0.564 + 0.825i)16-s + 1.30i·17-s + 0.331·19-s + (1.57 + 0.828i)20-s + (−1.21 − 0.301i)22-s − 0.0590·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 - 0.225i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 - 0.225i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.689495 + 0.0787618i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.689495 + 0.0787618i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.339 + 1.37i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 + 3.97T + 5T^{2} \) |
| 7 | \( 1 - 0.281iT - 7T^{2} \) |
| 11 | \( 1 + 4.15iT - 11T^{2} \) |
| 17 | \( 1 - 5.36iT - 17T^{2} \) |
| 19 | \( 1 - 1.44T + 19T^{2} \) |
| 23 | \( 1 + 0.283T + 23T^{2} \) |
| 29 | \( 1 - 0.381T + 29T^{2} \) |
| 31 | \( 1 - 6.98iT - 31T^{2} \) |
| 37 | \( 1 - 2.82iT - 37T^{2} \) |
| 41 | \( 1 - 5.37iT - 41T^{2} \) |
| 43 | \( 1 - 9.55T + 43T^{2} \) |
| 47 | \( 1 + 6.24T + 47T^{2} \) |
| 53 | \( 1 - 0.416T + 53T^{2} \) |
| 59 | \( 1 + 2.68iT - 59T^{2} \) |
| 61 | \( 1 + 1.06iT - 61T^{2} \) |
| 67 | \( 1 + 11.8T + 67T^{2} \) |
| 71 | \( 1 - 11.4T + 71T^{2} \) |
| 73 | \( 1 + 12.0T + 73T^{2} \) |
| 79 | \( 1 - 11.7iT - 79T^{2} \) |
| 83 | \( 1 - 1.24iT - 83T^{2} \) |
| 89 | \( 1 - 6.64iT - 89T^{2} \) |
| 97 | \( 1 + 14.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49964940574297513096843041512, −9.194131020433329988855232899469, −8.406704034634235741800681857736, −7.958504113198086961177001096225, −6.63205627044413830879077098346, −5.51766753058805005637065346831, −4.39329694670563376352439387361, −3.69323035275587815006288268519, −2.93746887239933048618008125573, −1.11109985226902658686879247631,
0.37484924540715085670294070227, 2.93889705636349996082340933183, 4.10240878262658954583541973413, 4.56627897388001102745629939090, 5.63893204929852719408368341528, 7.08614056253004702900689180040, 7.33732719528624835079864039862, 8.025789775844602311653688885630, 8.998404586422866419767897977664, 9.781426153680666442657649105343