L(s) = 1 | + (0.141 − 1.40i)2-s + (−1.95 − 0.398i)4-s + 0.802·5-s + 1.93i·7-s + (−0.838 + 2.70i)8-s + (0.113 − 1.12i)10-s − 1.56i·11-s + i·13-s + (2.72 + 0.274i)14-s + (3.68 + 1.56i)16-s − 3.54i·17-s + 4.68·19-s + (−1.57 − 0.320i)20-s + (−2.19 − 0.221i)22-s + 8.86·23-s + ⋯ |
L(s) = 1 | + (0.100 − 0.994i)2-s + (−0.979 − 0.199i)4-s + 0.359·5-s + 0.732i·7-s + (−0.296 + 0.955i)8-s + (0.0359 − 0.357i)10-s − 0.471i·11-s + 0.277i·13-s + (0.728 + 0.0733i)14-s + (0.920 + 0.390i)16-s − 0.860i·17-s + 1.07·19-s + (−0.351 − 0.0715i)20-s + (−0.468 − 0.0471i)22-s + 1.84·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.309 + 0.950i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.309 + 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.31635 - 0.956078i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31635 - 0.956078i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.141 + 1.40i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 - 0.802T + 5T^{2} \) |
| 7 | \( 1 - 1.93iT - 7T^{2} \) |
| 11 | \( 1 + 1.56iT - 11T^{2} \) |
| 17 | \( 1 + 3.54iT - 17T^{2} \) |
| 19 | \( 1 - 4.68T + 19T^{2} \) |
| 23 | \( 1 - 8.86T + 23T^{2} \) |
| 29 | \( 1 - 8.14T + 29T^{2} \) |
| 31 | \( 1 + 10.3iT - 31T^{2} \) |
| 37 | \( 1 - 7.05iT - 37T^{2} \) |
| 41 | \( 1 - 4.31iT - 41T^{2} \) |
| 43 | \( 1 + 1.21T + 43T^{2} \) |
| 47 | \( 1 - 10.6T + 47T^{2} \) |
| 53 | \( 1 + 1.19T + 53T^{2} \) |
| 59 | \( 1 + 8.98iT - 59T^{2} \) |
| 61 | \( 1 - 2.66iT - 61T^{2} \) |
| 67 | \( 1 + 9.46T + 67T^{2} \) |
| 71 | \( 1 - 2.27T + 71T^{2} \) |
| 73 | \( 1 + 12.1T + 73T^{2} \) |
| 79 | \( 1 + 0.0205iT - 79T^{2} \) |
| 83 | \( 1 + 0.956iT - 83T^{2} \) |
| 89 | \( 1 + 4.61iT - 89T^{2} \) |
| 97 | \( 1 - 15.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.814859204203911527504539930302, −9.280810203980473889036873537272, −8.558439569186056058879832371404, −7.50442672288546875604915095674, −6.19063998383511490061494134072, −5.35645727884779357392164253172, −4.54314675385270432862444871294, −3.17899962271084160608084210962, −2.47197622671040830361150022825, −1.00761085158661794071318787107,
1.12166914639152238125651261919, 3.09460802646483101882375474083, 4.18367241417184508551750840895, 5.11103632635400491157125774176, 5.92161330481754456026139588790, 7.04267672619493276901544474535, 7.38210570440932235018604340413, 8.534837425581341964966650472319, 9.191546225966965701988895738442, 10.19548765850807035463073519544