L(s) = 1 | + (−0.141 + 1.40i)2-s + (−1.95 − 0.398i)4-s − 0.802·5-s + 1.93i·7-s + (0.838 − 2.70i)8-s + (0.113 − 1.12i)10-s + 1.56i·11-s + i·13-s + (−2.72 − 0.274i)14-s + (3.68 + 1.56i)16-s + 3.54i·17-s + 4.68·19-s + (1.57 + 0.320i)20-s + (−2.19 − 0.221i)22-s − 8.86·23-s + ⋯ |
L(s) = 1 | + (−0.100 + 0.994i)2-s + (−0.979 − 0.199i)4-s − 0.359·5-s + 0.732i·7-s + (0.296 − 0.955i)8-s + (0.0359 − 0.357i)10-s + 0.471i·11-s + 0.277i·13-s + (−0.728 − 0.0733i)14-s + (0.920 + 0.390i)16-s + 0.860i·17-s + 1.07·19-s + (0.351 + 0.0715i)20-s + (−0.468 − 0.0471i)22-s − 1.84·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 + 0.608i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.793 + 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.160063 - 0.471682i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.160063 - 0.471682i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.141 - 1.40i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 + 0.802T + 5T^{2} \) |
| 7 | \( 1 - 1.93iT - 7T^{2} \) |
| 11 | \( 1 - 1.56iT - 11T^{2} \) |
| 17 | \( 1 - 3.54iT - 17T^{2} \) |
| 19 | \( 1 - 4.68T + 19T^{2} \) |
| 23 | \( 1 + 8.86T + 23T^{2} \) |
| 29 | \( 1 + 8.14T + 29T^{2} \) |
| 31 | \( 1 + 10.3iT - 31T^{2} \) |
| 37 | \( 1 - 7.05iT - 37T^{2} \) |
| 41 | \( 1 + 4.31iT - 41T^{2} \) |
| 43 | \( 1 + 1.21T + 43T^{2} \) |
| 47 | \( 1 + 10.6T + 47T^{2} \) |
| 53 | \( 1 - 1.19T + 53T^{2} \) |
| 59 | \( 1 - 8.98iT - 59T^{2} \) |
| 61 | \( 1 - 2.66iT - 61T^{2} \) |
| 67 | \( 1 + 9.46T + 67T^{2} \) |
| 71 | \( 1 + 2.27T + 71T^{2} \) |
| 73 | \( 1 + 12.1T + 73T^{2} \) |
| 79 | \( 1 + 0.0205iT - 79T^{2} \) |
| 83 | \( 1 - 0.956iT - 83T^{2} \) |
| 89 | \( 1 - 4.61iT - 89T^{2} \) |
| 97 | \( 1 - 15.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15821893009386931514806709859, −9.632755836315550724148696721376, −8.757776390774516307301862009840, −7.87880812909737255518302145332, −7.39474135372321856900639495097, −6.09272537030242564210014219368, −5.69831324872078819207029754999, −4.45128041767609954945252920457, −3.65291402261512869646364042814, −1.89751692366739635724140189940,
0.24204424657584819474284460033, 1.70437118671024131510236380582, 3.18516040849055519527179443342, 3.84580060595569812684037690502, 4.91665986514782733589699023196, 5.87755632471993273930884855305, 7.35866407667391371752339149555, 7.893655938273865468624112265251, 8.901206497140850638489225665992, 9.776164893709763227961014920147