L(s) = 1 | + (−0.508 − 1.31i)2-s + (−1.48 + 1.34i)4-s − 2.44·5-s − 2.55i·7-s + (2.52 + 1.27i)8-s + (1.24 + 3.22i)10-s + 5.76i·11-s − i·13-s + (−3.36 + 1.29i)14-s + (0.397 − 3.98i)16-s + 1.56i·17-s + 5.82·19-s + (3.62 − 3.28i)20-s + (7.61 − 2.93i)22-s − 2.69·23-s + ⋯ |
L(s) = 1 | + (−0.359 − 0.933i)2-s + (−0.741 + 0.671i)4-s − 1.09·5-s − 0.964i·7-s + (0.892 + 0.450i)8-s + (0.393 + 1.02i)10-s + 1.73i·11-s − 0.277i·13-s + (−0.900 + 0.346i)14-s + (0.0993 − 0.995i)16-s + 0.379i·17-s + 1.33·19-s + (0.810 − 0.733i)20-s + (1.62 − 0.625i)22-s − 0.561·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.468 + 0.883i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.468 + 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.794631 - 0.477867i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.794631 - 0.477867i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.508 + 1.31i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + 2.44T + 5T^{2} \) |
| 7 | \( 1 + 2.55iT - 7T^{2} \) |
| 11 | \( 1 - 5.76iT - 11T^{2} \) |
| 17 | \( 1 - 1.56iT - 17T^{2} \) |
| 19 | \( 1 - 5.82T + 19T^{2} \) |
| 23 | \( 1 + 2.69T + 23T^{2} \) |
| 29 | \( 1 - 6.76T + 29T^{2} \) |
| 31 | \( 1 + 5.29iT - 31T^{2} \) |
| 37 | \( 1 - 1.74iT - 37T^{2} \) |
| 41 | \( 1 + 7.99iT - 41T^{2} \) |
| 43 | \( 1 - 2.92T + 43T^{2} \) |
| 47 | \( 1 - 3.40T + 47T^{2} \) |
| 53 | \( 1 - 11.0T + 53T^{2} \) |
| 59 | \( 1 + 9.66iT - 59T^{2} \) |
| 61 | \( 1 + 0.282iT - 61T^{2} \) |
| 67 | \( 1 - 12.4T + 67T^{2} \) |
| 71 | \( 1 + 1.05T + 71T^{2} \) |
| 73 | \( 1 - 10.4T + 73T^{2} \) |
| 79 | \( 1 - 7.55iT - 79T^{2} \) |
| 83 | \( 1 + 14.2iT - 83T^{2} \) |
| 89 | \( 1 - 7.27iT - 89T^{2} \) |
| 97 | \( 1 - 4.07T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07204335009030140353246117570, −9.335903320854127499705663832046, −8.109154993773101073301605870847, −7.60896966577941365073685013242, −6.94461900226527145867326171796, −5.13634486970056919066464811216, −4.18182145829143048527996615502, −3.69553430900111470133143637831, −2.27870933920699476620791942491, −0.796225710235994027305509237984,
0.833028195587337107124109422426, 2.96801217325432331971456842772, 4.03916693590014856237252692680, 5.23429114203485034991971665218, 5.89617199883525669182211711385, 6.87630470459564015562753974148, 7.82897286796738508569044261835, 8.459931829603442517075313237770, 9.005615205978507548970944713345, 9.995926638666296909487268425429