L(s) = 1 | + (−0.513 − 1.31i)2-s + (−1.47 + 1.35i)4-s − 0.398·5-s + 2.67i·7-s + (2.53 + 1.24i)8-s + (0.204 + 0.524i)10-s − 0.326i·11-s + i·13-s + (3.52 − 1.37i)14-s + (0.340 − 3.98i)16-s − 4.09i·17-s − 6.71·19-s + (0.586 − 0.538i)20-s + (−0.430 + 0.167i)22-s − 2.62·23-s + ⋯ |
L(s) = 1 | + (−0.362 − 0.931i)2-s + (−0.736 + 0.676i)4-s − 0.178·5-s + 1.01i·7-s + (0.897 + 0.440i)8-s + (0.0646 + 0.165i)10-s − 0.0984i·11-s + 0.277i·13-s + (0.941 − 0.366i)14-s + (0.0852 − 0.996i)16-s − 0.992i·17-s − 1.53·19-s + (0.131 − 0.120i)20-s + (−0.0917 + 0.0357i)22-s − 0.547·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.478 - 0.878i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.478 - 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.113755 + 0.191467i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.113755 + 0.191467i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.513 + 1.31i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 - iT \) |
good | 5 | \( 1 + 0.398T + 5T^{2} \) |
| 7 | \( 1 - 2.67iT - 7T^{2} \) |
| 11 | \( 1 + 0.326iT - 11T^{2} \) |
| 17 | \( 1 + 4.09iT - 17T^{2} \) |
| 19 | \( 1 + 6.71T + 19T^{2} \) |
| 23 | \( 1 + 2.62T + 23T^{2} \) |
| 29 | \( 1 + 3.53T + 29T^{2} \) |
| 31 | \( 1 - 3.68iT - 31T^{2} \) |
| 37 | \( 1 - 2.51iT - 37T^{2} \) |
| 41 | \( 1 - 0.433iT - 41T^{2} \) |
| 43 | \( 1 + 11.2T + 43T^{2} \) |
| 47 | \( 1 - 9.50T + 47T^{2} \) |
| 53 | \( 1 + 5.56T + 53T^{2} \) |
| 59 | \( 1 - 3.04iT - 59T^{2} \) |
| 61 | \( 1 + 3.06iT - 61T^{2} \) |
| 67 | \( 1 - 2.27T + 67T^{2} \) |
| 71 | \( 1 + 10.0T + 71T^{2} \) |
| 73 | \( 1 + 6.43T + 73T^{2} \) |
| 79 | \( 1 - 10.8iT - 79T^{2} \) |
| 83 | \( 1 - 0.495iT - 83T^{2} \) |
| 89 | \( 1 + 10.2iT - 89T^{2} \) |
| 97 | \( 1 - 1.27T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32062098244519622899858183851, −9.516939181678230202470085486880, −8.777708144902403953695788728127, −8.176139742266190361798401471828, −7.11160060868396509105065131948, −5.92316895402562532551944954600, −4.87646309162216061437880623854, −3.90568529282729356866715375250, −2.74739651674845167190285635675, −1.83209081235770141678628594971,
0.11460046222739264161967588441, 1.78834666918766485150392521474, 3.84306305380577911146055219876, 4.37506642574452304989835277358, 5.68729679558310355472666212184, 6.41696848441334678419582843859, 7.33723107702259844886562087817, 8.012860543173938349595856867733, 8.725292417450756265681286474652, 9.797834803904234539103342013570