L(s) = 1 | + (−0.668 − 1.24i)2-s + (−1.10 + 1.66i)4-s − 3.68·5-s + 5.03i·7-s + (2.81 + 0.262i)8-s + (2.46 + 4.58i)10-s − 3.64i·11-s − i·13-s + (6.27 − 3.36i)14-s + (−1.55 − 3.68i)16-s + 5.67i·17-s − 1.84·19-s + (4.06 − 6.13i)20-s + (−4.54 + 2.43i)22-s + 2.33·23-s + ⋯ |
L(s) = 1 | + (−0.472 − 0.881i)2-s + (−0.552 + 0.833i)4-s − 1.64·5-s + 1.90i·7-s + (0.995 + 0.0926i)8-s + (0.778 + 1.45i)10-s − 1.09i·11-s − 0.277i·13-s + (1.67 − 0.900i)14-s + (−0.389 − 0.921i)16-s + 1.37i·17-s − 0.422·19-s + (0.909 − 1.37i)20-s + (−0.968 + 0.519i)22-s + 0.487·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.866 + 0.499i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.866 + 0.499i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0694384 - 0.259613i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0694384 - 0.259613i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.668 + 1.24i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + 3.68T + 5T^{2} \) |
| 7 | \( 1 - 5.03iT - 7T^{2} \) |
| 11 | \( 1 + 3.64iT - 11T^{2} \) |
| 17 | \( 1 - 5.67iT - 17T^{2} \) |
| 19 | \( 1 + 1.84T + 19T^{2} \) |
| 23 | \( 1 - 2.33T + 23T^{2} \) |
| 29 | \( 1 + 4.56T + 29T^{2} \) |
| 31 | \( 1 + 10.2iT - 31T^{2} \) |
| 37 | \( 1 - 1.61iT - 37T^{2} \) |
| 41 | \( 1 + 11.3iT - 41T^{2} \) |
| 43 | \( 1 + 1.54T + 43T^{2} \) |
| 47 | \( 1 + 7.17T + 47T^{2} \) |
| 53 | \( 1 - 2.41T + 53T^{2} \) |
| 59 | \( 1 + 7.69iT - 59T^{2} \) |
| 61 | \( 1 + 10.7iT - 61T^{2} \) |
| 67 | \( 1 - 1.62T + 67T^{2} \) |
| 71 | \( 1 + 6.50T + 71T^{2} \) |
| 73 | \( 1 - 7.47T + 73T^{2} \) |
| 79 | \( 1 - 5.87iT - 79T^{2} \) |
| 83 | \( 1 - 1.25iT - 83T^{2} \) |
| 89 | \( 1 + 1.11iT - 89T^{2} \) |
| 97 | \( 1 - 6.82T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.610875138325462789574577815121, −8.631385364985330014293694742251, −8.404814608242793658344250489634, −7.65277036086278004787331578921, −6.21431149677773620157670724227, −5.18213532924033872914415737073, −3.91661636065874907234802705488, −3.26036863181969421017946509054, −2.10805921093745853397663319972, −0.17829647723652570688089415259,
1.11843832293778828533343480284, 3.47394413018979605437110874158, 4.49048113388987995215203443556, 4.80303484515119854561605734256, 6.70916049768110744480116439259, 7.24552941036060051173665577478, 7.55522498825104949186062550731, 8.493388579735291671403152966788, 9.522903055749232757237427138280, 10.33788929331243897477515426560