| L(s) = 1 | + (−1.21 + 0.730i)2-s + (0.931 − 1.76i)4-s + 2.32i·5-s − 4.85·7-s + (0.165 + 2.82i)8-s + (−1.70 − 2.81i)10-s − 3.45i·11-s − i·13-s + (5.87 − 3.54i)14-s + (−2.26 − 3.29i)16-s − 0.641·17-s − 5.60i·19-s + (4.11 + 2.16i)20-s + (2.52 + 4.18i)22-s + 9.37·23-s + ⋯ |
| L(s) = 1 | + (−0.856 + 0.516i)2-s + (0.465 − 0.884i)4-s + 1.04i·5-s − 1.83·7-s + (0.0585 + 0.998i)8-s + (−0.538 − 0.891i)10-s − 1.04i·11-s − 0.277i·13-s + (1.56 − 0.947i)14-s + (−0.566 − 0.824i)16-s − 0.155·17-s − 1.28i·19-s + (0.921 + 0.484i)20-s + (0.538 + 0.892i)22-s + 1.95·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0585i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0585i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.726867 + 0.0212994i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.726867 + 0.0212994i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.21 - 0.730i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
| good | 5 | \( 1 - 2.32iT - 5T^{2} \) |
| 7 | \( 1 + 4.85T + 7T^{2} \) |
| 11 | \( 1 + 3.45iT - 11T^{2} \) |
| 17 | \( 1 + 0.641T + 17T^{2} \) |
| 19 | \( 1 + 5.60iT - 19T^{2} \) |
| 23 | \( 1 - 9.37T + 23T^{2} \) |
| 29 | \( 1 - 5.01iT - 29T^{2} \) |
| 31 | \( 1 - 2.89T + 31T^{2} \) |
| 37 | \( 1 - 5.74iT - 37T^{2} \) |
| 41 | \( 1 + 2.69T + 41T^{2} \) |
| 43 | \( 1 + 0.307iT - 43T^{2} \) |
| 47 | \( 1 - 8.30T + 47T^{2} \) |
| 53 | \( 1 + 1.60iT - 53T^{2} \) |
| 59 | \( 1 - 0.256iT - 59T^{2} \) |
| 61 | \( 1 + 11.1iT - 61T^{2} \) |
| 67 | \( 1 + 9.58iT - 67T^{2} \) |
| 71 | \( 1 + 11.6T + 71T^{2} \) |
| 73 | \( 1 - 5.74T + 73T^{2} \) |
| 79 | \( 1 - 8.80T + 79T^{2} \) |
| 83 | \( 1 - 13.4iT - 83T^{2} \) |
| 89 | \( 1 - 3.75T + 89T^{2} \) |
| 97 | \( 1 + 1.98T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.964741451964836778231350672407, −9.192184374838773218348694361028, −8.599524539885076708867726799212, −7.24449842210663096590427575613, −6.74138261797009755580641288280, −6.22468174978716017025795059104, −5.11454257621846366157744371204, −3.19756583196626406423079028306, −2.82934106085460239397987776805, −0.60560032765931564972640256959,
0.934574052977436391258575201705, 2.40964267310049440225105648979, 3.54147633217152189384467427381, 4.50004744179401842151936048743, 5.90508403052005263460655343313, 6.87067332669737084323560588612, 7.55937090743025538812060949211, 8.832800092520791350230069201625, 9.173338039067092775678574934155, 9.964927275115341262998259863461