L(s) = 1 | + (−1.03 + 0.967i)2-s + (0.128 − 1.99i)4-s + 1.39·5-s + (2.60 + 1.50i)7-s + (1.79 + 2.18i)8-s + (−1.43 + 1.34i)10-s + (1.67 + 2.90i)11-s + (3.25 − 1.56i)13-s + (−4.14 + 0.969i)14-s + (−3.96 − 0.512i)16-s + (−1.30 + 2.25i)17-s + (1.73 − 3.01i)19-s + (0.179 − 2.78i)20-s + (−4.54 − 1.37i)22-s + (0.413 + 0.716i)23-s + ⋯ |
L(s) = 1 | + (−0.729 + 0.684i)2-s + (0.0642 − 0.997i)4-s + 0.623·5-s + (0.985 + 0.568i)7-s + (0.635 + 0.771i)8-s + (−0.454 + 0.426i)10-s + (0.505 + 0.876i)11-s + (0.901 − 0.432i)13-s + (−1.10 + 0.259i)14-s + (−0.991 − 0.128i)16-s + (−0.315 + 0.546i)17-s + (0.398 − 0.690i)19-s + (0.0400 − 0.622i)20-s + (−0.968 − 0.293i)22-s + (0.0862 + 0.149i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.432 - 0.901i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.432 - 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22722 + 0.772700i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22722 + 0.772700i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.03 - 0.967i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.25 + 1.56i)T \) |
good | 5 | \( 1 - 1.39T + 5T^{2} \) |
| 7 | \( 1 + (-2.60 - 1.50i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.67 - 2.90i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.30 - 2.25i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.73 + 3.01i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.413 - 0.716i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.52 - 0.878i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.22iT - 31T^{2} \) |
| 37 | \( 1 + (1.69 + 2.93i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.270 - 0.156i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.10 - 3.52i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 9.27iT - 47T^{2} \) |
| 53 | \( 1 - 0.507iT - 53T^{2} \) |
| 59 | \( 1 + (-6.95 + 12.0i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.47 - 4.31i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.361 - 0.626i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.51 + 2.60i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 13.8iT - 73T^{2} \) |
| 79 | \( 1 + 1.78T + 79T^{2} \) |
| 83 | \( 1 - 7.28T + 83T^{2} \) |
| 89 | \( 1 + (10.3 - 5.94i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.96 + 1.13i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.922413087352174737717892718422, −9.310794156663165063988801499178, −8.530330877276091726399189729298, −7.80489162154714542447769297365, −6.85708665675524480451944998430, −5.93036142080295542952453976039, −5.27957719155866462033798092374, −4.21012852635437344344007582046, −2.28835443459805587492823705942, −1.36231401709805390777230926909,
1.05459380799982056969983586469, 2.00171638771209459088757066240, 3.43688998999826490205453979172, 4.28887623431250254030454809199, 5.57926981325031211828084864207, 6.66309573851332121677432781869, 7.59130545524937095175011105559, 8.493300189621760599360817503966, 9.023478322613132339559483510152, 10.00806578550797771900026513296