L(s) = 1 | + (1.22 − 0.707i)2-s + (0.486 + 1.66i)3-s + (0.999 − 1.73i)4-s + (3.85 + 2.22i)5-s + (1.77 + 1.69i)6-s + (−0.257 − 0.446i)7-s − 2.82i·8-s + (−2.52 + 1.61i)9-s + 6.29·10-s + (3.36 + 0.820i)12-s + (1.80 − 3.12i)13-s + (−0.630 − 0.364i)14-s + (−1.82 + 7.49i)15-s + (−2.00 − 3.46i)16-s − 4.35i·17-s + (−1.95 + 3.76i)18-s + ⋯ |
L(s) = 1 | + (0.866 − 0.499i)2-s + (0.280 + 0.959i)3-s + (0.499 − 0.866i)4-s + (1.72 + 0.996i)5-s + (0.722 + 0.690i)6-s + (−0.0973 − 0.168i)7-s − 0.999i·8-s + (−0.842 + 0.538i)9-s + 1.99·10-s + (0.971 + 0.236i)12-s + (0.499 − 0.866i)13-s + (−0.168 − 0.0973i)14-s + (−0.471 + 1.93i)15-s + (−0.500 − 0.866i)16-s − 1.05i·17-s + (−0.460 + 0.887i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 - 0.218i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 - 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.63837 + 0.401769i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.63837 + 0.401769i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.22 + 0.707i)T \) |
| 3 | \( 1 + (-0.486 - 1.66i)T \) |
| 13 | \( 1 + (-1.80 + 3.12i)T \) |
good | 5 | \( 1 + (-3.85 - 2.22i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.257 + 0.446i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 4.35iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (5.47 - 9.48i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 9.80T + 37T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.41 - 2.44i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (10.1 - 5.85i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.27iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27959218643591787310443394435, −9.616165149372189852330167665314, −8.859931023669440215498306207068, −7.22174956810751869843605960984, −6.36485792391713333742010456736, −5.47901587300803936452009198186, −4.98576558800731209554931082030, −3.39269946406503533795890944495, −2.96280823093015578320229507188, −1.80087130901819304033254416829,
1.64867912252791657978187410222, 2.26964924371531881840883260974, 3.76642128694814799673331191312, 5.03408248754086782856804620385, 5.93990695096910801348021887259, 6.25694495024306166945577433351, 7.26113229237562475074602137890, 8.497347062471584409896047380779, 8.825709209269510232729356919691, 9.820089604833646679911909382156