Properties

Label 2-936-13.12-c1-0-7
Degree $2$
Conductor $936$
Sign $0.784 - 0.620i$
Analytic cond. $7.47399$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.23i·5-s − 4.57i·7-s + 1.23i·11-s + (2.23 + 2.82i)13-s + 5.65·17-s − 1.08i·19-s − 3.49·23-s − 5.47·25-s + 9.15·29-s + 4.57i·31-s + 14.8·35-s + 5.65i·37-s + 5.70i·41-s + 8.94·43-s − 2.76i·47-s + ⋯
L(s)  = 1  + 1.44i·5-s − 1.72i·7-s + 0.372i·11-s + (0.620 + 0.784i)13-s + 1.37·17-s − 0.247i·19-s − 0.728·23-s − 1.09·25-s + 1.69·29-s + 0.821i·31-s + 2.50·35-s + 0.929i·37-s + 0.891i·41-s + 1.36·43-s − 0.403i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.784 - 0.620i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.784 - 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $0.784 - 0.620i$
Analytic conductor: \(7.47399\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{936} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :1/2),\ 0.784 - 0.620i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.55344 + 0.539886i\)
\(L(\frac12)\) \(\approx\) \(1.55344 + 0.539886i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + (-2.23 - 2.82i)T \)
good5 \( 1 - 3.23iT - 5T^{2} \)
7 \( 1 + 4.57iT - 7T^{2} \)
11 \( 1 - 1.23iT - 11T^{2} \)
17 \( 1 - 5.65T + 17T^{2} \)
19 \( 1 + 1.08iT - 19T^{2} \)
23 \( 1 + 3.49T + 23T^{2} \)
29 \( 1 - 9.15T + 29T^{2} \)
31 \( 1 - 4.57iT - 31T^{2} \)
37 \( 1 - 5.65iT - 37T^{2} \)
41 \( 1 - 5.70iT - 41T^{2} \)
43 \( 1 - 8.94T + 43T^{2} \)
47 \( 1 + 2.76iT - 47T^{2} \)
53 \( 1 + 3.49T + 53T^{2} \)
59 \( 1 - 11.7iT - 59T^{2} \)
61 \( 1 + 0.472T + 61T^{2} \)
67 \( 1 + 10.2iT - 67T^{2} \)
71 \( 1 - 7.70iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 16.9T + 79T^{2} \)
83 \( 1 - 6.76iT - 83T^{2} \)
89 \( 1 + 15.2iT - 89T^{2} \)
97 \( 1 + 6.99iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29146679107631334803581120115, −9.673534082361530862068115976829, −8.242713889446877708788604138501, −7.43470213770697361647838329808, −6.82521877483428054734230200470, −6.17607456191662042303436374691, −4.62959445026710170802449249961, −3.75652483365564900053142638650, −2.90804947809190257184968375972, −1.26830161863694313553830468636, 0.947411682839192209144226630666, 2.35910521890706450960969423766, 3.60464027420102415877274438063, 4.90965363854962623864501342258, 5.65249742644982580696421623966, 6.09194593704837248672289939000, 7.910187274099124836331081046680, 8.307707853621333711375548374715, 9.070069285769126268577974784475, 9.703481506897249268413914115433

Graph of the $Z$-function along the critical line