L(s) = 1 | + (−0.809 − 1.40i)2-s + (−0.190 + 0.330i)3-s + (−0.309 + 0.535i)4-s + (−0.5 − 0.866i)5-s + 0.618·6-s − 2.23·8-s + (1.42 + 2.47i)9-s + (−0.809 + 1.40i)10-s + (−0.309 + 0.535i)11-s + (−0.118 − 0.204i)12-s − 13-s + 0.381·15-s + (2.42 + 4.20i)16-s + (−1.92 + 3.33i)17-s + (2.30 − 3.99i)18-s + (0.5 + 0.866i)19-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.990i)2-s + (−0.110 + 0.190i)3-s + (−0.154 + 0.267i)4-s + (−0.223 − 0.387i)5-s + 0.252·6-s − 0.790·8-s + (0.475 + 0.823i)9-s + (−0.255 + 0.443i)10-s + (−0.0931 + 0.161i)11-s + (−0.0340 − 0.0590i)12-s − 0.277·13-s + 0.0986·15-s + (0.606 + 1.05i)16-s + (−0.467 + 0.809i)17-s + (0.544 − 0.942i)18-s + (0.114 + 0.198i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.821129 + 0.0521090i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.821129 + 0.0521090i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.809 + 1.40i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.190 - 0.330i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.309 - 0.535i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 17 | \( 1 + (1.92 - 3.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.73 - 4.73i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 1.38T + 29T^{2} \) |
| 31 | \( 1 + (4.78 - 8.28i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.26 - 2.18i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 1.09T + 41T^{2} \) |
| 43 | \( 1 - 8.47T + 43T^{2} \) |
| 47 | \( 1 + (3.73 + 6.47i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.42 - 4.20i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.88 - 6.72i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.97 - 10.3i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.16 + 2.01i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.70T + 71T^{2} \) |
| 73 | \( 1 + (-5.66 + 9.80i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.23 - 3.87i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 3.14T + 83T^{2} \) |
| 89 | \( 1 + (1.38 + 2.39i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 7.47T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33532768498860287180697070122, −9.373406133579702288306223788124, −8.683725316162921673170741830734, −7.79494211871461167081600457629, −6.76599494588248512135716149132, −5.58031864983934324239508622119, −4.67565898809586399007095569632, −3.56264718351669411897165355935, −2.32150406027769808619270819949, −1.28409361608178823589123460168,
0.51498057059916952385696235195, 2.58180467232992135455490088068, 3.68926534652449666169724480242, 4.99251417831809499031691415130, 6.12908998579813106363067015156, 6.81870239267038427089465983439, 7.37886996774784717771185948281, 8.191417234566691470177833413392, 9.273507589853751449107440797291, 9.554724965280288437475050966426